×

Hysteresis modelling and chaos prediction in one- and two-DOF hysteretic models. (English) Zbl 1179.74095

The paper presents a simulation of various hysteretic loops by means of additional state variables (internal ones). This modeling for energy dissipation allows to model accurately the loops of various forms reflecting, for example, the behavior of magnetorheological/electrorheological fluids in a damper/absorber as well as hysteresis in shape-memory alloys, and stress-strain hysteresis with transient process in a steel rope. The developed models are effective, enable the reproduction of minor loops, and show fast numerical convergence and a high degree of coincidence with test data. All these models are based on the Masing-Bouc-Wen’s structure. One-degree-of-freedom (one-DOF) hysteretic oscillations (highly nonlinear nonautonomous Masing and Bouc-Wen hysteretic models with discontinuous right-hand sides) are studied by using the earlier methodology. This methodology has been applied to predict stick-slip chaos in two-DOF discontinuous systems with friction and in other smooth and non-smooth systems. The algorithm proposed for quantifying regular and chaotic dynamics is simpler and faster from a computational point of view than standard procedures, and allows to trace regular/irregular responses of hysteretic systems. Then, the evolutions of chaotic regions and regions for pinched hysteresis in various control parameter planes are present as the amplitude of external excitations versus frequency and the amplitude of external excitation versus damper factor with increasing hysteretic dissipation. Chaotic regions are also found in the amplitude of external excitation versus hysteretic dissipation planes. These investigations allow to observe a wealth of hysteretic oscillator behavior and to demonstrate two important phenomena restraining and governing the occurrence of chaotic behavior as a function of hysteretic dissipation. Finally, the authors consider a two-DOF autonomous hysteretic system with friction. The conditions for occurrence of chaos in the system are found for autonomous coupled hysteretic oscillators under sliding friction in the plane of maximal static friction forces of both oscillators versus belt velocity. The corresponding examples of phase planes and hysteretic loops illustrate the obtained chaotic regimes.

MSC:

74N30 Problems involving hysteresis in solids
70K55 Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics
37N15 Dynamical systems in solid mechanics
Full Text: DOI

References:

[1] Awrejcewicz J. and Mosdorf R. (2003). Numerical Analysis of some Problems of Chaotic Dynamics (in Polish). WNT, Warsaw
[2] Awrejcewicz J. and Dzyubak L. (2003). Stick-slip chaotic oscillations in a quasi-autonomous mechanical system. Int. J. Nonlin. Sci. Num. Simul. 4(2): 155–160
[3] Awrejcewicz J., Dzyubak L. and Grebogi C. (2004). A direct numerical method for quantifying regular and chaotic orbits. Chaos Solit Fract. 19: 503–507 · Zbl 1086.37044 · doi:10.1016/S0960-0779(03)00062-6
[4] Awrejcewicz J. and Dzyubak L. (2005). Quantifying smooth and non-smooth regular and chaotic dynamics. Int. J. Bifur. Chaos 15(6): 2041–2055 · Zbl 1092.37529 · doi:10.1142/S0218127405013137
[5] Awrejcewicz J. and Dzyubak L. (2005). Influence of hysteretic dissipation on chaotic responses. J. Sound Vib. 284: 513–519 · Zbl 1237.34051 · doi:10.1016/j.jsv.2004.08.005
[6] Awrejcewicz J. and Dzyubak L. (2005). Evolution of chaotic regions in control parameter planes depending on hysteretic dissipation. Spec. Issue Nonlin. Anal. 63(5–7): 155–164 · Zbl 1154.70337
[7] Awrejcewicz J., Dzyubak L. and Grebogi C. (2005). Estimation of chaotic and regular (stick-slip and slip-slip) oscillations exhibited by coupled oscillators with dry friction. Nonlin. Dyn. 42(2): 383–394 · Zbl 1102.70012 · doi:10.1007/s11071-005-7183-0
[8] Awrejcewicz J. and Lamarque C.-H. (2003). Bifurcations and Chaos in Nonsmooth Mechanical systems. World Scientific, New Jersey, London, Singapore, Hong Kong · Zbl 1067.70001
[9] Bastien J., Schatzman M. and Lamarque C.H. (2000). Study of some rheological models with a finite number of degrees of freedom. Eur. J. Mech. A Solids 19: 277–307 · Zbl 0954.74011 · doi:10.1016/S0997-7538(00)00163-7
[10] di Bernardo M., Kowalczyk P. and Nordmark A. (2003). Sliding bifurcation: a novel mechanism for the sudden onset of chaos in dry-friction oscillators. Int. J. Bifur. Chaos 13(10): 2935–2948 · Zbl 1099.70504 · doi:10.1142/S021812740300834X
[11] Brogliato B. (1999). Nonsmooth Mechanics. Springer, Berlin Heidelberg New York · Zbl 0917.73002
[12] Capecchi D. and Masiani R. (1996). Reduced phase space analysis for hysteretic oscillators of Masing type. Chaos, Solitons Fractals 7: 1583–1600 · Zbl 1080.70527 · doi:10.1016/S0960-0779(96)00062-8
[13] Coddington E.A. and Levinson N. (1955). Theory of Ordinary Differential Equations. McGraw-Hill, New York · Zbl 0064.33002
[14] Lacarbonara W. and Vestroni F. (2003). Nonclassical responses of oscillators with hysteresis. Nonlin. Dyn. 32(3): 235–238 · Zbl 1062.70599 · doi:10.1023/A:1024423626386
[15] Li H.G., Zhang J.W. and Wen B.C. (2002). Chaotic behaviors of a bilinear hysteretic oscillator. Mech. Res. Commun. 29: 283–289 · Zbl 1024.70501 · doi:10.1016/S0093-6413(02)00266-5
[16] Leine, R.I., van de Vrande, B.L., van Campen, D.H.: Bifurcations in Nonlinear Discontinuous Systems. Report WFW 99.010, Vakgroep Fundamentele Werktuigkunde, Eindhoven (1999) · Zbl 0980.70018
[17] Levinson N (1949). A second order differential equation with singular solutions. Ann. Math. 50: 127–153 · Zbl 0045.36501 · doi:10.2307/1969357
[18] Lyapunov, A.M.: Obshaya zadacha ob ustoichivosti dvizhenya, ONTI, Leningrad-Moskva, in Russian. (Liapunov, A.M.\(\sim\)(1966) Stability of Motion, Academic, New York) (1935)
[19] Masiani R., Capecchi D. and Vestroni F. (2002). Resonant and coupled response of hysteretic two-degree-of-freedom systems using harmonic balance method. Int. J. Nonlin. Mech. 37: 1421–1434 · Zbl 1346.74148 · doi:10.1016/S0020-7462(02)00023-9
[20] Movchan A.A. (1960). Stability of processes with respect to two metrics (Ustoichivost’ protsessov po dvum metrikam) (in Russian). Prikl. Mat. Mekh. 24(6): 988–1001
[21] Movchan A.A. (1965). Theoretical foundation of some criteria of equilibrium stability of plates (Obosnovanie nekotoryh kriteriev ustoichivosti ravnovesiia plastin). Inzhenernyi Z. 5(4): 773–777
[22] Niemytzki, V.: Über vollstāunstabile dynamische Systeme. Annalidi Mat., Ser. IV, t.14 (1935–36)
[23] Ortin J. and Delaey L. (2002). Hysteresis in shape-memory alloys. Int. J. Nonlin. Mech. 37: 1275–1281 · Zbl 1346.74029 · doi:10.1016/S0020-7462(02)00027-6
[24] Sapinski B. (2003). Dynamic characteristics of an experimental MR fluid. Eng. Trans. 51(4): 399–418
[25] Sapinski B. and Filus J. (2003). Analysis of parametric models of MR linear damper. J. Theor. Appl. Mech. 41(2): 215–240
[26] Schiehlen, W.: Nonlinear oscillations in multibody systems – modeling and stability assessment. In: Proceedings of 1st European Nonlinear Oscillations Conference, Hamburg (Mathematical Research, vol.72). Akademie Verlag, Berlin pp. 85–106 1993 · Zbl 0787.70014
[27] Wolf A., Jack B., Swinney H.L. and Vastano J.A. (1985). Determining Lyapunov exponents from a time series. Physica 16D: 285–317 · Zbl 0585.58037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.