×

A Hochschild-Kostant-Rosenberg theorem for cyclic homology. (English) Zbl 1387.19004

The main result of the paper under review is to relate the authors’ previous work on the \(\ell\)-functor [M. Bökstedt and I. Ottosen, Fundam. Math. 162, No. 3, 251–275 (1999; Zbl 0952.55006)] to negative, ordinary, and periodic cyclic homology [J.-L. Loday, Cyclic homology. 2nd ed. Berlin: Springer (1998; Zbl 0885.18007)]. Results are stated for a commutative ring \(A\) over the field \({\mathbb{Z}}/2\). Then \(\ell (A)\) is defined as the free, commutative, unital \({\mathbb{Z}}/2\)-algebra on generators \(\delta (a)\), \(\phi (a)\), \(q(a)\) for \(a \in A\), and a generator \(u\), subject to a list of twelve relations, stated in the paper. When \(A\) is unital, there is a natural algebra homomorphism \[ \psi : \ell (A) \to HC^{-}_{*} (A), \] where \(HC^{-}_* (A)\) denotes the negative cyclic homology of \(A\). The authors call \(A\) supplemented if \(A\) is endowed with an augmentation \(A \to k\) so that the composition \(k \to A \to k\) is the identity. Proven is that if \(A\) is smooth (over \({\mathbb{Z}}/2\)), supplemented, and of finite type, then \(\psi\) is an algebra isomorphism. Now let \(\ell^+ (A)\) be the free \(\ell (A)\)-module on generators \(\gamma (a)\), \(a \in A\) and \(v^i\), \(i = 0, \;1, \;2, \ldots \, \), modulo a list of nine relations. Proven is that there is a natural \(\ell (A)\)-linear map \[ \psi^+ : \ell^+ (A) \to HC_* (A), \] where \(HC_*(A)\) denotes the (usual) cyclic homology of \(A\). When \(A\) is smooth, \(\psi^+\) is an isomorphism. Finally, let \(\ell^{\mathrm{per}} (A)\) be the free, commutative, unital \({\mathbb{Z}}/2\)-algebra on generators \(\psi (a)\), \(q(a)\), \(a \in A\), and \(u\), \(u^{-1}\), subject to a list of seven relations. Then there is an algebra homomorphism \[ \psi^{\mathrm{per}} : \ell^{\mathrm{per}} (A) \to HC^{\mathrm{per}}_* (A), \] where \(HC^{\mathrm{per}}(A)\) denotes periodic cyclic homology. If \(A\) is smooth, supplemented, and of finite type, then \(\psi^{\mathrm{per}}\) is an isomorphism. Additionally there are natural isomorphisms of functors from unital commutative \({\mathbb{Z}}/2\)-algebras of finite type to unital graded commutative \({\mathbb{Z}}/2\)-algebras \[ \ell \simeq L_0 ( HC^{-}_* ), \;\;\;\ell^{\mathrm{per}} \simeq L_0 ( HC^{\mathrm{per}}_* ) \] and a natural isomorphism to graded \({\mathbb{Z}}/2\)-vector spaces \[ \ell^+ \simeq L_0 ( HC_* ), \] where \(L_0\) denotes the zeroth derived functor.

MSC:

19D55 \(K\)-theory and homology; cyclic homology and cohomology
18G50 Nonabelian homological algebra (category-theoretic aspects)

References:

[1] Boardman, J. M., Conditionally convergent spectral sequences, (Homotopy Invariant Algebraic Structures. Homotopy Invariant Algebraic Structures, Baltimore, MD. Homotopy Invariant Algebraic Structures. Homotopy Invariant Algebraic Structures, Baltimore, MD, Contemp. Math., vol. 239 (1998)), 49-84 · Zbl 0947.55020
[2] Bökstedt, M.; Ottosen, I., Homotopy orbits of free loop spaces, Fundam. Math., 162, 251-257 (1999) · Zbl 0952.55006
[3] Bökstedt, M.; Ottosen, I., A spectral sequence for string cohomology, Topology, 44, 1181-1212 (2005) · Zbl 1078.55008
[4] Cartier, P., Une nouvelle opération sur les formes différentielles, C. R. Acad. Sci. Paris, 244, 426-428 (1957) · Zbl 0077.04502
[5] Getzler, E.; Jones, J. D.S., \(A_\infty \)-algebras and the cyclic bar complex, Ill. J. Math., 34, 256-283 (1990) · Zbl 0701.55009
[6] Goerss, P. G.; Jardine, J. F., Simplicial Homotopy Theory, Prog. Math., vol. 174 (1999), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0914.55004
[7] Goodwillie, T. G., Relative algebraic \(K\)-theory and cyclic homology, Ann. Math., 124, 347-402 (1986) · Zbl 0627.18004
[8] Katz, N. M., Nilpotent connections and the monodromy theorem: applications of a result of Turrittin, Publ. Math. IHÉS, 39, 175-232 (1970) · Zbl 0221.14007
[9] Khalkhali, M.; Rangipour, B., On the generalized cyclic Eilenberg-Zilber theorem, Can. Math. Bull., 47, 38-48 (2004) · Zbl 1048.19004
[10] Loday, J.-L., Cyclic Homology, Grundlehren der Mathematischen Wissenschaften, vol. 301 (1998), Springer-Verlag: Springer-Verlag Berlin · Zbl 0885.18007
[11] Miller, H., The Sullivan conjecture on maps from classifying spaces, Ann. Math., 120, 39-87 (1984) · Zbl 0552.55014
[12] Ndombol, B.; El Haouari, M., The free loop space equivariant cohomology algebra of some formal spaces, Math. Z., 266, 863-875 (2010) · Zbl 1203.57014
[13] Quillen, D. G., Homotopical Algebra, Lecture Notes in Mathematics, vol. 43 (1967), Springer-Verlag: Springer-Verlag Berlin, New York · Zbl 0168.20903
[14] Quillen, D. G., On the (co-) homology of commutative rings, (Applications of Categorical Algebra (Proc. Sympos. Pure Math., vol. XVII, New York, 1968) (1970), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 65-87 · Zbl 0234.18010
[15] Weibel, C. A., An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, vol. 38 (1994), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0797.18001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.