×

The free loop space equivariant cohomology algebra of some formal spaces. (English) Zbl 1203.57014

Authors’ abstract: Let \({\mathbb{K}}\) be a field of characteristic \(p > 0\) and \(S ^{1}\) the unit circle. We construct a model for the negative cylic homology of a commutative cochain algebra with two stages Sullivan minimal model. Using the notion of \(shc\)-formality introduced in B. Ndombol and J.-C. Thomas [Topology 41, No. 1, 85–106 (2002; Zbl 1011.16008)], the main result of B. Ndombol and M. El Haouari [Math. Ann. 338, No. 2, 385–403 (2007; Zbl 1136.57018)] and techniques of M. Vigué-Poirrier [J. Pure Appl. Algebra 91, No. 1–3, 347–354 (1994; Zbl 0802.55011)] we compute the \(S^{1}\)-equivariant cohomology algebras of the free loop spaces of the infinite complex projective space \({\mathbb{CP}(\infty)}\) and the odd spheres \(S^{2q+1}\).

MSC:

57T30 Bar and cobar constructions
Full Text: DOI

References:

[1] Bitjong N., El haouari M.: On the negative cyclic homology of shc-algebras. Math. Ann. 338, 347–354 (2007) · Zbl 1132.14006 · doi:10.1007/s00208-006-0078-7
[2] Bökstedt M., Ottosen I.: Homotopy orbits of free loop spaces. Fund. Math. 162, 251–275 (1999) · Zbl 0952.55006
[3] Bitjong N., Thomas J.-C.: On the cohomology algebra of free loop spaces. Topology 41, 85–106 (2003) · Zbl 1011.16008
[4] Carlsson G.E., Cohen R.L.: The cyclic groups and the free loop space. Comment. Math. Helv. 62, 423–449 (1987) · Zbl 0632.57028 · doi:10.1007/BF02564455
[5] El haouari M.: p-formalité des espaces. J. Pure Appl. Algebra 78, 27–47 (1992) · Zbl 0744.55007 · doi:10.1016/0022-4049(92)90017-A
[6] Félix Y., Halperin S., Jacobsson C., Löfwall C., Thomas J.-C.: The radical of the homotopy Lie algebra. Am. J. Math. 110(2), 301–322 (1988) · Zbl 0654.55011 · doi:10.2307/2374504
[7] Félix Y., Halperin S., Thomas J.-C.: Adams’ cobar equivalence. Trans. Am. Math. Soc. 329, 531–549 (1992) · Zbl 0765.55005 · doi:10.2307/2153950
[8] Félix Y., Halperin S., Thomas J.-C.: Rational Homotopy Theory. Springer, Berlin (2000)
[9] Félix, Y., Halperin, S., Thomas, J.-C.: Algebraic Models in Geometry. Oxford Graduate Texts in Mathematics
[10] Halperin S.: Universal enveloping algebra and loop space homology. J. Pure Appl. Algebra 83, 237–282 (1992) · Zbl 0769.57025 · doi:10.1016/0022-4049(92)90046-I
[11] Halperin S., Vigué-Poirrier M.: The homology of a free loop space. Pac. J. Math. 147, 311–324 (1991) · Zbl 0666.55011
[12] Jones J.D.S.: Cyclic homology and equivariant homology. Inv. Math. 87, 403–423 (1987) · Zbl 0644.55005 · doi:10.1007/BF01389424
[13] McCleary, J.: Homotopy Theory and Closed Geodesics, Homotopy Theory and related Topics (Kinosaki, 1988), pp. 86–94, Letures notes in Math., vol. 1418. Springer, Berlin (1990)
[14] Loday J-L.: Cyclic Homology. Springer, Berlin (1992) · Zbl 0780.18009
[15] Munkholm H.J.: The Eilenberg-Moore spectral sequence and strongly homotopy multiplicative maps. J. Pure Appl. Algebra 5, 1–50 (1974) · Zbl 0294.55011 · doi:10.1016/0022-4049(74)90002-4
[16] Menichi L.: The cohomology ring of free loop spaces. Homol. Homotopy Appl. 3, 193–224 (2001) · Zbl 0974.55005
[17] Mac Lane S.: Homology. Springer, Berlin (1995)
[18] Sullivan D., Vigué-Poirrier M.: The homology theory of the closed geodesic problem. J. Differ. Geom. 11, 633–644 (1976) · Zbl 0361.53058
[19] Vigué-Poirrier M.: Homologie cyclique des espaces formels. J. Pure Appl. Algebra 91, 347–354 (1994) · Zbl 0802.55011 · doi:10.1016/0022-4049(94)90150-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.