×

An existence result for quasi-equilibrium problems via Ekeland’s variational principle. (English) Zbl 1464.58004

The authors present existence results for equilibrium and quasi-equilibrium problems by using the so-called transfer lower continuity in place of convexity assumptions.

MSC:

58E30 Variational principles in infinite-dimensional spaces
54E50 Complete metric spaces
49J40 Variational inequalities
49J27 Existence theories for problems in abstract spaces

References:

[1] Muu, L.; Oettli, W., Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal. Theory Methods Appl., 18, 12, 1159-1166 (1992) · Zbl 0773.90092 · doi:10.1016/0362-546X(92)90159-C
[2] Blum, E.; Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. Student, 63, 1-4, 123-145 (1994) · Zbl 0888.49007
[3] Fan, K.: A minimax inequality and applications. In: Inequalities, III (Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin), pp. 103-113 (1972) · Zbl 0302.49019
[4] von Neumann, J., Zur theorie der gesellschaftsspiele, Math. Ann., 100, 1, 295-320 (1928) · JFM 54.0543.02 · doi:10.1007/BF01448847
[5] Ansari, Q.; Köbis, E.; Yao, JC, Vector Variational Inequalities and Vector Optimization: Theory and Applications (2017), Berlin: Springer, Berlin
[6] Bianchi, M.; Pini, R., A note on equilibrium problems with properly quasimonotone bifunctions, J. Glob. Optim., 20, 67-76 (2001) · Zbl 0985.90090 · doi:10.1023/A:1011234525151
[7] Iusem, A.; Sosa, W., New existence results for equilibrium problems, Nonlinear Anal., 52, 621-635 (2003) · Zbl 1017.49008 · doi:10.1016/S0362-546X(02)00154-2
[8] Iusem, A.; Kassay, G.; Sosa, W., On certain conditions for the existence of solutions of equilibrium problems, Math. Program., 116, 259-273 (2009) · Zbl 1158.90009 · doi:10.1007/s10107-007-0125-5
[9] Iusem, A.; Kassay, G.; Sosa, W., An existence result for equilibrium with some surjectivity consequences, J. Convex Anal., 16, 807-826 (2009) · Zbl 1200.90164
[10] Nasri, M.; Sosa, W., Equilibrium problems and generalized Nash games, Optimization, 60, 1161-1170 (2011) · Zbl 1230.91012 · doi:10.1080/02331934.2010.527341
[11] Castellani, M.; Giuli, M., On equivalent equilibrium problems, J. Optim. Theory Appl., 147, 157-168 (2010) · Zbl 1229.90226 · doi:10.1007/s10957-010-9703-4
[12] Castellani, M.; Giuli, M., Refinements of existence results for relaxed quasimonotone equilibrium problems, J. Glob. Optim., 57, 1213-1227 (2013) · Zbl 1302.90249 · doi:10.1007/s10898-012-0021-2
[13] Cotrina, J.; García, Y., Equilibrium problems: existence results and applications, Set Valued Var. Anal., 26, 159-177 (2018) · Zbl 06861473 · doi:10.1007/s11228-017-0451-6
[14] Fan, K., A generalization of Tychonoff’s fixed point theorem, Math. Ann., 142, 305-310 (1961) · Zbl 0093.36701 · doi:10.1007/BF01353421
[15] Brézis, H.; Nirenberg, L.; Stampacchia, G., A remark on Ky Fan’s minimax principle, Boll. Un. Mat. Ital., 4, 6, 293-300 (1972) · Zbl 0264.49013
[16] Bianchi, M.; Kassay, G.; Pini, R., Existence of equilibria via Ekeland’s principle, J. Math. Anal., 305, 502-512 (2005) · Zbl 1061.49005 · doi:10.1016/j.jmaa.2004.11.042
[17] Aleche, B.; Radulescu, V., The Ekeland variational principle for equilibrium problems revisited and applications, Nonlinear Anal. RWA, 23, 17-25 (2015) · Zbl 1318.49011 · doi:10.1016/j.nonrwa.2014.11.006
[18] Oettli, W.; Théra, M., Equivalents of Ekeland’s principle, Bull. Austral. Math. Soc., 48, 3, 385-392 (1993) · Zbl 0793.54025 · doi:10.1017/S0004972700015847
[19] Mosco, U.; Mawhin, J.; Waelbroeck, L.; Gossez, JP; Lami Dozo, EJ, Implicit variational problems and quasi variational inequalities, Nonlinear Operators and the Calculus of Variations, 83-156 (1976), Berlin: Springer, Berlin · Zbl 0346.49003
[20] Facchinei, F.; Kanzow, C., Generalized Nash equilibrium problems, 4OR, 5, 3, 173-210 (2007) · Zbl 1211.91162 · doi:10.1007/s10288-007-0054-4
[21] Cotrina, J.; Zúñiga, J., Quasi-equilibrium problems with non-self constraint map, J. Glob. Optim., 75, 177-197 (2019) · Zbl 1431.49005 · doi:10.1007/s10898-019-00762-5
[22] Cotrina, J.; Hantoute, A.; Svensson, A., Existence of quasi-equilibria on unbounded constraint sets, Optimization (2020) · Zbl 1489.90196 · doi:10.1080/02331934.2020.1778690
[23] Aussel, D.; Cotrina, J.; Iusem, A., An existence result for quasi-equilibrium problems, J. Convex Anal., 24, 55-66 (2017) · Zbl 1364.49008
[24] Castellani, M.; Giuli, M.; Pappalardo, M., A Ky Fan minimax inequality for quasiequilibria on finite-dimensional spaces, J. Optim. Theory Appl., 179, 53-64 (2018) · Zbl 1506.49004 · doi:10.1007/s10957-018-1319-0
[25] Cotrina, J.; Zúñiga, J., A note on quasi-equilibrium problems, Oper. Res. Lett., 46, 138-140 (2018) · Zbl 1525.91114 · doi:10.1016/j.orl.2017.12.002
[26] Castellani, M.; Giuli, M., Ekeland’s principle for cyclically monotone equilibrium problems, Nonlinear Anal. RWA, 32, 213-228 (2016) · Zbl 1342.49010 · doi:10.1016/j.nonrwa.2016.04.011
[27] Tian, GQ; Zhou, J., Transfer continuities, generalizations of the Weierstrass and maximum theorems: a full characterization, J. Math. Econ., 24, 281-303 (1995) · Zbl 0895.90035 · doi:10.1016/0304-4068(94)00687-6
[28] Debreu, G., A social equilibrium existence theorem, Proc. Natl. Acad. Sci., 38, 10, 886-893 (1952) · Zbl 0047.38804 · doi:10.1073/pnas.38.10.886
[29] Ansari, QH; Idzik, A.; Yao, JC, Coincidence and fixed point theorems with applications, Topol. Methods Nonlinear Anal., 15, 1, 191-202 (2000) · Zbl 1029.54047 · doi:10.12775/TMNA.2000.016
[30] Ansari, QH; Chan, WK; Yang, XQ, The system of vector quasi-equilibrium problems with applications, J. Glob. Optim., 29, 1, 45-57 (2004) · Zbl 1073.90032 · doi:10.1023/B:JOGO.0000035018.46514.ca
[31] Penot, JP; Théra, M., Semicontinuous mappings in general topology, Arch. Math. (Basel), 38, 2, 158-166 (1982) · Zbl 0465.54019 · doi:10.1007/BF01304771
[32] Choquet, G.: Cours d’analyse. Tome II: Topologie. Espaces topologiques et espaces métriques. Fonctions numériques. Espaces vectoriels topologiques. Deuxième édition, revue et corrigée. Masson et Cie, Éditeurs, Paris (1969) · Zbl 0169.53801
[33] Hadjisavvas, N.; Khatibzadeh, H., Maximal monotonicity of bifunctions, Optimization, 59, 2, 147-160 (2010) · Zbl 1250.47050 · doi:10.1080/02331930801951116
[34] Alizadeh, MH; Bianchi, M.; Hadjisavvas, N.; Pini, R., On cyclic and \(n\)-cyclic monotonicity of bifunctions, J. Glob. Optim., 60, 4, 599-616 (2014) · Zbl 1329.47050 · doi:10.1007/s10898-013-0113-7
[35] Giuli, M., Cyclically monotone equilibrium problems and Ekeland’s principle, Decis. Econ. Finance, 40, 1-2, 231-242 (2017) · Zbl 1394.58006 · doi:10.1007/s10203-017-0188-6
[36] Bianchi, M.; Schaible, S., An extension of pseudolinear functions and variational inequality problems, J. Optim. Theory Appl., 104, 59-71 (2000) · Zbl 1039.49004 · doi:10.1023/A:1004672604998
[37] Bianchi, M.; Hadjisavvas, N.; Schaible, S., On pseudomonotone maps \(T\) for which \(-T\) is also pseudomonotone, J. Convex Anal., 10, 1, 149-168 (2003) · Zbl 1059.47058
[38] Ekeland, I., On the variational principle, J. Math. Anal. Appl., 47, 324-353 (1974) · Zbl 0286.49015 · doi:10.1016/0022-247X(74)90025-0
[39] Al-Homidan, S.; Ansari, QH; Kassay, G., Vectorial form of Ekeland variational principle with applications to vector equilibrium problems, Optimization, 69, 3, 415-436 (2020) · Zbl 1434.58004 · doi:10.1080/02331934.2019.1589469
[40] Aussel, D.; Cotrina, J., Quasimonotone quasivariational inequalities: existence results and applications, J. Optim. Theory Appl., 158, 637-652 (2013) · Zbl 1284.49014 · doi:10.1007/s10957-013-0270-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.