×

Algebro-geometric solution of the discrete KP equation over a finite field out of a hyperelliptic curve. (English) Zbl 1107.37060

The authors transfer the common algebro-geometric method of construction of the discrete KP equation to the finite field case. First: the authors recall the discrete KP equation. Given an algebraic curve \(C\) of genus \(g\) over the finite field \(F_q\), they introduce the wave function \(\psi(n_1,n_2,n_3)\) as a rational function on \(C\) with prescribed order of zeros at certain points \(A_0,\dots,A_3\) and poles \(B_j\), \(j=1,\dots,g\). For the generic case, the \(F_q\)-valued potential \(\tau\) is defined by \(T_i\tau/ \tau=\sigma_1\), where \(T_i\) are translation operators (e.g., \(T_{1\psi} =\psi(n_1+1,n_2,n_3))\) and \(\sigma_i\) certain functions defined by the expansion of \(\psi\) at \(A_i\). Then, the discrete KP equation reads \[ (T_1 (\tau)(T_2T_3\tau)-(T_2\tau)(T_3T_1\tau)+(T_3\tau)(T_1T_2 \tau)=0. \] Second, the authors summarize the finite field version of the Krichever construction of the solution of the discrete KP equation. It is interpreted in terms of the Jacobian variety \(J(C)\). Third, the procedure is applied to the genus-two hyperelliptic curve \[ v^2+uv=u^5+5u^4+6u^2+u+3 \] over \(F_7\). Explicit results for \(n_1,n_2=1,\dots,35\) and \(n_3=-1,1,0, 2\) are stated.

MSC:

37K20 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with algebraic geometry, complex analysis, and special functions
14H70 Relationships between algebraic curves and integrable systems
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q53 KdV equations (Korteweg-de Vries equations)

References:

[1] Belokolos, E.D., Bobenko, A.I., Enol’skii, V.Z., Its, A.R., Matveev, V.B.: Algebro-geometric approach to nonlinear integrable equations. Berlin: Springer-Verlag, 1994 · Zbl 0809.35001
[2] Białecki, M.: Methods of algebraic geometry over finite fields in construction of integrable cellular automata. PhD dissertation, Warsaw University, Institute of Theoretical Physics, 2003 · Zbl 1178.14034
[3] Białecki, M., Doliwa, A.: The discrete KP and KdV equations over finite fields. Theor. Math. Phys. 137, 1412–1418 (2003) · Zbl 1178.14034 · doi:10.1023/A:1026000605865
[4] Bobenko, A., Bordemann, M., Gunn, Ch., Pinkall, U., On two integrable cellular automata. Commun. Math. Phys. 158, 127–134 (1993) · Zbl 0795.35098
[5] Bruschi, M., Santini, P.M.: Cellular automata in 1+1, 2+1 and 3+1 dimensions, constants of motion and coherent structures. Physica D 70, 185–209 (1994) · Zbl 0809.58021 · doi:10.1016/0167-2789(94)90065-5
[6] Cornell, G., Silverman, J.H. (eds.): Arithmetic geometry. New York: Springer-Verlag, 1986 · Zbl 0596.00007
[7] Doliwa, A., Białecki, M., Klimczewski, P.: The Hirota equation over finite fields: algebro-geometric approach and multisoliton solutions. J. Phys. A 36, 4827–4839 (2003) · Zbl 1033.37036 · doi:10.1088/0305-4470/36/17/309
[8] Fokas, A.S., Papadopoulou, E.P., Saridakis, Y.G.: Soliton cellular automata. Physica D 41, 297–321 (1990) · Zbl 0797.68121 · doi:10.1016/0167-2789(90)90001-6
[9] Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: John Wiley and Sons, 1978 · Zbl 0408.14001
[10] Hartshorne, R.: Algebraic geometry. New York: Springer-Verlag, 1977 · Zbl 0367.14001
[11] Hirota, R.: Nonlinear partial difference equations. III. Discrete sine-Gordon equation. J. Phys. Soc. Jpn. 43, 2079–2086 (1977) · Zbl 1334.39015
[12] Hirota, R.: Discrete analogue of a generalized Toda equation. J. Phys. Soc. Jpn. 50, 3785–3791 (1981) · doi:10.1143/JPSJ.50.3785
[13] Koblitz, N.: Algebraic aspects of cryptography. Berlin: Springer-Verlag, 1998 · Zbl 0890.94001
[14] Krichever, I.M.: Algebraic curves and non-linear difference equations. Usp. Mat. Nauk 33, 215–216 (1978) · Zbl 0382.39003
[15] Krichever, I.M., Wiegmann, P., Zabrodin, A.: Elliptic solutions to difference non-linear equations and related many body problems. Commun. Math. Phys. 193, 373–396 (1998) · Zbl 0907.35124 · doi:10.1007/s002200050333
[16] Lang, S.: Abelian varieties. New York: Interscience Publishers Inc. 1958 · Zbl 0098.13201
[17] Lang, S.: Algebra. Reading, MA: Addison-Wesley, 1970
[18] Matsukidaira, J., Satsuma, J., Takahashi, D., Tokihiro, T., Torii, M.: Toda-type cellular automaton and its N-soliton solution. Phys. Lett. A 225, 287–295 (1997) · Zbl 0962.82526 · doi:10.1016/S0375-9601(96)00899-7
[19] Menezes, A.J., Wu, Y.H., Zuccherato, R.J.: An elementary introduction to hyperelliptic curves. Appendix in [13], pp. 151–178
[20] Milne, J.S.: Jacobian varieties. Chapter VII in [6], pp. 167–212
[21] Moreno, C.: Algebraic curves over finite fields. Cambridge: University Press, 1991 · Zbl 0733.14025
[22] Mumford, D.: An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg–de Vries equation, and related nonlinear equations. Proceedings of the International Symposium on Algebraic Geometry (M. Nagata, ed.), Kinokuniya, Tokyo, 1978 pp. 115–153
[23] von Neumann, J.: The general and logical theory of automata. In: The collected works of John von Neumann (A.W. Taub, ed.), Vol. 5, New York: Pergamon Press, 1963 · Zbl 0188.00104
[24] Shafarevich, I.: Basic algebraic geometry. Heidelberg: Springer-Verlag, 1974 · Zbl 0284.14001
[25] Stichtenoth, H.: Algebraic function fields and codes. Berlin: Springer-Verlag, 1993 · Zbl 0816.14011
[26] Takahashi, D., Satsuma, J.: A soliton cellular automaton. J. Phys. Soc. Jpn. 59, 3514–3519 (1990) · doi:10.1143/JPSJ.59.3514
[27] Tokihiro, T., Takahashi, D., Matsukidaira, J., Satsuma, J.: From soliton equations to integrable cellular automata through a limiting procedure. Phys. Rev. Lett. 76, 3247–3250 (1996) · doi:10.1103/PhysRevLett.76.3247
[28] Ulam, S.: Random processes and transformations. In: Proceedings of the International Congress of Mathematicians, Cambridge, MA, 30 August–6 September 1950 (P. A. Smith, O. Zariski, eds.), Providence, RI: AMS, 1952, pp. 264–275
[29] Wolfram, S.: Theory and application of cellular automata. Singapore: World Scientific, 1986 · Zbl 0609.68043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.