×

Spatial pattern of discrete and ultradiscrete Gray-Scott model. (English) Zbl 1302.39014

Summary: Ultradiscretization is a limiting procedure transforming a given difference equation into a cellular automaton. In addition the cellular automaton constructed by this procedure preserves the essential properties of the original equation, such as the structure of exact solutions for integrable equations. In this article, we propose a discretization and an ultradiscretization of Gray-Scott model which is not an integrable system and which gives various spatial patterns with appropriate initial data and parameters. The resulting systems give a traveling pulse and a self-replication pattern with appropriate initial data and parameters. The ultradiscrete system is directly related to the elementary cellular automaton Rule 90 which gives a Sierpinski gasket pattern. A \((2+1)\)D ultradiscrete Gray-Scott model that gives a ring pattern and a self-replication pattern are also constructed.

MSC:

39A12 Discrete version of topics in analysis
35K57 Reaction-diffusion equations

References:

[1] M. J. Ablowitz, Stable, multi-state, time-reversible cellular automata with rich particle content,, Quaestiones Math., 15, 325 (1992) · Zbl 0787.58022 · doi:10.1080/16073606.1992.9631695
[2] M. E. Alexander, \( \mathcalO(l)\) shift in Hopf bifurcations for a class of non-standard numerical schemes,, in Proceedings of the 2004 Conference on Differential Equations and Applications in Mathematical Biology (2004)
[3] A. S. Fokas, Soliton cellular automata,, Physica D, 41, 297 (1990) · Zbl 0797.68121 · doi:10.1016/0167-2789(90)90001-6
[4] A. S. Fokas, Interaction of simple particles in soliton cellular automata,, Stud. Appl. Math., 81, 153 (1989) · Zbl 0689.68076
[5] P. Gray, Sustained oscillations and other exotic patterns of behaviour in isothermal reactions,, J. Phys. Chem., 89, 22 (1985) · doi:10.1021/j100247a009
[6] W. Kunishima, Differential equations for creating complex cellular automaton patterns,, J. Phys. Soc. Japan, 73, 2033 (2004) · Zbl 1156.81347 · doi:10.1143/JPSJ.73.2033
[7] J. Matsukidaira, Toda-type cellular automaton and its N-soliton solution,, Phys. Lett. A, 225, 287 (1997) · Zbl 0962.82526 · doi:10.1016/S0375-9601(96)00899-7
[8] W. Mazin, Pattern formation in the bistable Gray-Scott model,, Math. Comput. Simul., 40, 371 (1996) · Zbl 0881.92038 · doi:10.1016/0378-4754(95)00044-5
[9] M. Murata, Exact solutions with two parameters for an ultradiscrete Painlevé equation of type \(A_6^{(1)}\),, SIGMA, 7 (2011) · Zbl 1244.33017
[10] M. Murata, Tropical discretization: Ultradiscrete Fisher-KPP equation and ultradiscrete Allen-Cahn equation,, J. Difference. Equ. Appl., 19, 1008 (2013) · Zbl 1278.39012 · doi:10.1080/10236198.2012.705834
[11] M. Murata, Exact solutions for discrete and ultradiscrete modified KdV equations and their relation to box-ball systems,, J. Phys. A Math. Gen., 39 (2006) · Zbl 1091.35534 · doi:10.1088/0305-4470/39/1/L04
[12] M. Murata, How to discretize differential systems in a systematic way,, J. Phys. A: Math. Theor., 43 (2010) · Zbl 1222.39009 · doi:10.1088/1751-8113/43/31/315203
[13] A. Nagai, Soliton cellular automaton, toda molecule equation and sorting algorithm,, Phys. Lett. A, 255, 265 (1999) · doi:10.1016/S0375-9601(99)00162-0
[14] Y. Nishiura, A skeleton structure of self-replicating dynamics,, Physica D, 130, 73 (1999) · Zbl 0936.35090 · doi:10.1016/S0167-2789(99)00010-X
[15] Y. Nishiura, Spatio-temporal chaos for the Gray-Scott model,, Physica D, 150, 137 (2001) · Zbl 0981.35022 · doi:10.1016/S0167-2789(00)00214-1
[16] J. K. Park, Soliton-like behavior in automata,, Physica D, 19, 423 (1986) · Zbl 0604.68061 · doi:10.1016/0167-2789(86)90068-0
[17] J. E. Pearson, Complex patterns in a simple system,, Science, 261, 189 (1993) · doi:10.1126/science.261.5118.189
[18] D. Takahashi, A soliton cellular automaton,, J. Phys. Soc. Japan, 59, 3514 (1990) · doi:10.1143/JPSJ.59.3514
[19] D. Takahashi, On the pattern formation mechanism of (2+1)D max-plus models,, J. Phys. A: Math. Gen., 34, 10715 (2001) · Zbl 0990.68089 · doi:10.1088/0305-4470/34/48/333
[20] H. Tanaka, Derivation of a differential equation exhibiting replicative time-evolution patterns by inverse ultra-discretization,, J. Phys. Soc. Japan, 78 (2009) · doi:10.1143/JPSJ.78.034002
[21] T. Tokihiro, From soliton equations to integrable cellular automata through a limiting procedure,, Phys. Rev. Lett., 76, 3247 (1996) · doi:10.1103/PhysRevLett.76.3247
[22] S. Wolfram, Twenty Problems in the Theory of Cellular Automata,, Physica Scripta., T9, 170 (1985) · Zbl 0966.68517 · doi:10.1088/0031-8949/1985/T9/029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.