×

On a shifted \(LR\) transformation derived from the discrete hungry Toda equation. (English) Zbl 1311.65036

Summary: The discrete hungry Toda (dhToda) equation is known as an integrable system which is derived from the study of the numbered box and ball system. In the authors’ paper [A. Fukuda et al., Phys. Lett., A 375, No. 3, 303–308 (2011; Zbl 1241.37010)], we associate the dhToda equation with a sequence of \(LR\) transformations for a totally nonnegative (TN) matrix, and then, in another paper [A. Fukuda et al., Ann. Mat. Pura Appl. (4) 192, No. 3, 423–445 (2013; Zbl 1349.37064)], based on the dhToda equation, we design an algorithm for computing the eigenvalues of the TN matrix. In this paper, in order to accelerate the convergence speed, we first introduce the shift of origin into the \(LR\) transformations associated with the dhToda equation, then derive a recursion formula for generating the shifted \(LR\) transformations. We next present a shift strategy for avoiding the breakdown of the shifted \(LR\) transformations. We finally clarify the asymptotic convergence and show that the sequence of TN matrices generated by the shifted \(LR\) transformations converges to a lower triangular matrix, exposing the eigenvalues of the original TN matrix. The asymptotic convergence is also verified through some numerical examples.

MSC:

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37N30 Dynamical systems in numerical analysis
15B48 Positive matrices and their generalizations; cones of matrices
Full Text: DOI

References:

[1] Ando T.: Totally positive matrices. Linear Algebr. Appl. 90, 165-219 (1987) · Zbl 0613.15014 · doi:10.1016/0024-3795(87)90313-2
[2] Fukuda, A., Ishiwata, E., Yamamoto, Y., Iwasaki, M., Nakamura, Y.: Integrable discrete hungry systems and their related matrix eigenvalues. Annal. Mat. Pura Appl. (2011). doi:10.1007/s10231-011-0231-0 · Zbl 1349.37064
[3] Fukuda A., Yamamoto Y., Iwasaki M., Ishiwata E., Nakamura Y.: A Bäcklund transformation between two integrable discrete hungry systems. Phys. Lett. A 375, 303-308 (2010) · Zbl 1241.37010 · doi:10.1016/j.physleta.2010.11.029
[4] Koev P.: Accurate eigenvalue and SVDs of totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 27, 1-23 (2005) · Zbl 1095.65031 · doi:10.1137/S0895479803438225
[5] Li C.-H., Mathias R.: Interlacing inequalities for totally nonnegative matrices. Linear Algebr. Appl. 341, 35-44 (2002) · Zbl 0997.15014 · doi:10.1016/S0024-3795(01)00240-3
[6] Matsukidaira J., Satsuma J., Takahashi D., Tokihiro T., Torii M.: Toda-type cellular automaton and its N-soliton solution. Phys. Lett. A 225, 287-295 (1997) · Zbl 0962.82526 · doi:10.1016/S0375-9601(96)00899-7
[7] Rutishauser H.: Über eine kubisch konvergente Variante der LR-Transformation. Zeitschrift für Angewandte Mathematik und Mechanik 11, 49-54 (1960) · Zbl 0128.11701
[8] Rutishauser H.: Lectures on Numerical Mathematics. Birkhäuser, Boston (1990) · Zbl 0699.65002 · doi:10.1007/978-1-4612-3468-5
[9] Symes W.W.: The QR algorithm and scattering for the finite nonperiodic Toda lattice. Physica 4, 275-280 (1982) · Zbl 1194.37112
[10] Tokihiro T., Nagai A., Satsuma J.: Proof of solitonical nature of box and ball systems by means of inverse ultra-discretization. Inverse Probl. 15, 1639-1662 (1999) · Zbl 1138.37341 · doi:10.1088/0266-5611/15/6/314
[11] Wilkinson J.H.: The Algebraic Eigenvalue Problem. Oxford University Press, Oxford (1965) · Zbl 0258.65037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.