×

The smoothest average: Dirichlet, Fejér and Chebyshev. (English) Zbl 1531.42005

Summary: We are interested in the ‘smoothest’ averaging that can be achieved by convolving functions \(f \in \ell^2 (\mathbb{Z})\) with an averaging function \(u\). More precisely, suppose \(u : \{-n, \dots, n\} \to \mathbb{R}\) is a symmetric function normalized to \(\sum_{k = -n}^n u (k) = 1\). We show that every convolution operator is not-too-smooth, in the sense that \[ \sup_{f \in \ell^2 (\mathbb{Z})} \frac{\Vert\nabla (f \ast u) \Vert_{\ell^2 (\mathbb{Z})}}{\Vert f \Vert_{\ell^2}} \geqslant \frac{2}{2n + 1}, \] and we show that equality holds if and only if \(u\) is constant on the interval \(\{-n, \dots, n\}\). In the setting where smoothness is measured by the \(\ell^2\)-norm of the discrete second derivative and we further restrict our attention to functions \(u\) with nonnegative Fourier transform, we establish the inequality \[ \sup_{f \in \ell^2 (\mathbb{Z})} \frac{\Vert \Delta (f \ast u) \Vert_{\ell^2 (\mathbb{Z})}}{\Vert f \Vert_{\ell^2 (\mathbb{Z})}} \geqslant \frac{4}{(n + 1)^2}, \] with equality if and only if \(u\) is the triangle function \(u(k) = (n + 1 - |k|) / (n + 1)^2\). We also discuss a continuous analogue and several open problems.

MSC:

42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
42A85 Convolution, factorization for one variable harmonic analysis
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
33C20 Generalized hypergeometric series, \({}_pF_q\)

References:

[1] W. O.Amrein and A. M.Berthier, ‘On support properties of \(L^p\)‐functions and their Fourier transforms’, J. Funct. Anal.24 (1977) 258-267. · Zbl 0355.42015
[2] J.Babaud, A.Witkin, M.Baudin and R.Duda, ‘Uniqueness of the Gaussian kernel for scale‐space filtering’, IEEE Trans. Pattern Anal. Machine Intell.8 (1986) 26-33. · Zbl 0574.93054
[3] K. I.Babenko, ‘An inequality in the theory of Fourier integrals’, Izv. Akad. Nauk SSSR Ser. Mat.25 (1961) 531-542. · Zbl 0122.34404
[4] R. C.Barnard and S.Steinerberger, ‘Three convolution inequalities on the real line with connections to additive combinatorics’, J. Number Theory207 (2020) 42-55. · Zbl 1447.11008
[5] W.Beckner, ‘Inequalities in fourier analysis’, Ann. of Math. (2)102 (1975) 159-182. · Zbl 0338.42017
[6] W.Beckner, ‘Pitt’s inequality and the uncertainty principle’, Proc. Amer. Math. Soc.123 (1995) 1897-1905. · Zbl 0842.58077
[7] J. J.Benedetto and M.Dellatorre, ‘Uncertainty principles and weighted norm inequalities’, Functional analysis, harmonic analysis, and image processing: a collection of papers in honor of Björn Jawerth, Contemporary Mathematics 693 (eds M.Cwikel (ed.) and M.Milman (ed.); American Mathematical Society, Providence, RI, 2017) 55-78. · Zbl 1388.42016
[8] J. J.Benedetto and H. P.Heinig, ‘Weighted Fourier inequalities: new proofs and generalizations’, J. Fourier Anal. Appl.9 (2003) 1-37. · Zbl 1034.42010
[9] M.Benedicks, ‘On Fourier transforms of functions supported on sets of finite Lebesgue measure’, J. Math. Anal. Appl.106 (1985) 180-183. · Zbl 0576.42016
[10] A.Bernshteyn and M.Tait, ‘Improved lower bound for difference bases’, J. Number Theory205 (2019) 50-58. · Zbl 1473.11021
[11] J.Bourgain, L.Clozel and J. P.Kahane, ‘Principe d’Heisenberg et fonctions positives’, Ann. Inst. Fourier (Grenoble)60 (2010) 1215-1232. · Zbl 1298.11105
[12] E.Carneiro and J.Madrid, ‘Derivative bounds for fractional maximal functions’, Trans. Amer. Math. Soc.369 (2017) 4063-4092. · Zbl 1370.26022
[13] P.Chebyshev, Oeuvres, vol. 1 (Académie Imperiale des Sciences, St. Petersburg, 1899) 387-469.
[14] J.Cilleruelo, I.Ruzsa and C.Vinuesa, ‘Generalized Sidon sets’, Adv. Math.225 (2010) 2786-2807. · Zbl 1293.11019
[15] A.Clonginger and S.Steinerberger, ‘On suprema of autoconvolutions with an application to Sidon sets, Proc. Amer. Math. Soc.145 (2017) 3191-3200. · Zbl 1430.11037
[16] H.Cohn and F.Goncalves, ‘An optimal uncertainty principle in twelve dimensions via modular forms’, Invent. Math.217 (2019) 799-831. · Zbl 1422.42010
[17] M. G.Cowling and J. F.Price, ‘Bandwidth versus time concentration, The Heisenberg‐Pauli‐Weyl inequality’, SIAM J. Math. Anal.15 (1984) 151-165.
[18] G. B.Folland and A.Sitaram, ‘The uncertainty principle: a mathematical survey’, J. Fourier Anal. Appl.3 (1997) 207-238. · Zbl 0885.42006
[19] F.Goncalves, D.Oliveira e Silva and S.Steinerberger, ‘Hermite polynomials, linear flows on the torus, and an uncertainty principle for roots’, J. Math. Anal. Appl.451 (2017) 678-711. · Zbl 1373.33018
[20] J.Harsanyi, A simplified bargaining model for the n‐person cooperative game’, Internat. Econom. Rev.4 (1963) 194-220. · Zbl 0118.15103
[21] I. I.Hirschman, A note on entropy, Amer. J. Math.79 (1957) 152-156. · Zbl 0079.35104
[22] J.Hogan and J.Lakey, Time‐frequency and time‐scale methods: adaptive decompositions, uncertainty principles and sampling (Springer, Berlin, 2007).
[23] A.Ionescu and S.Wainger, ‘\(L^p\) boundedness of discrete singular Radon transforms’, J. Amer. Math. Soc.19 (2006) 357-383. · Zbl 1158.42007
[24] N.Kravitz, ‘Generalized difference sets and autocorrelation integrals’, Acta Arith.199 (2021) 199-219. · Zbl 1475.05015
[25] T.Lindeberg, ‘On the axiomatic foundations of linear scale‐space’, Gaussian space‐scale theory, Computational Imaging and Vision 8 (eds J.Sporring (ed.), M.Nielsen (ed.), L.Florack (ed.) and P.Johansen (ed.); Springer, Dordrecht, 1997) 75-97.
[26] T.Lindeberg, ‘Generalized Gaussian scale‐space axiomatics comprising linear scale‐space, affine scale‐space and spatio‐temporal scale‐space’, J. Math. Imaging Vision40 (2011) 36-81. · Zbl 1255.68250
[27] J.Madrid and J. P. G.Ramos, ‘On optimal autocorrelation inequalities on the real line’, Comm. Pure Appl. Anal.20 (2021) 369-388. · Zbl 1460.42002
[28] A.Magyar, E. M.Stein and S.Wainger, ‘Discrete analogues in harmonic analysis: spherical averages’, Ann. of Math. (2)155 (2002) 189-208. · Zbl 1036.42018
[29] M.Matolcsi and C.Vinuesa, ‘Improved bounds on the supremum of autoconvolutions’, J. Math. Anal. Appl.372 (2010) 439-447. · Zbl 1247.11031
[30] J.Nash, ‘The bargaining problem’, Econometrica18 (1950) 155-162. · Zbl 1202.91122
[31] S. L.Shapley, ‘A value for \(n\)‐person games’, Contribution to the theory of games, vol. II, Annals of Mathematics Studies 28 (eds H. W.Kuhn (ed.) and A. W.Tucker (ed.); Princeton University Press, Princeton, NJ, 1953) 307-317. · Zbl 0050.14404
[32] E.Stein and S.Wainger, ‘Discrete analogues in harmonic analysis, I: \( \ell^2\) estimates for singular radon transforms’, Amer. J. Math.121 (1999) 1291-1336. · Zbl 0945.42009
[33] S.Steinerberger, ‘The best way to reconcile your past is exponentially’, Amer. Math. Monthly127 (2020) 64-69. · Zbl 1442.44004
[34] S.Steinerberger, ‘Fourier uncertainty principles, scale space theory and the smoothest average’, Preprint, 2020, arXiv:2005.01665. · Zbl 1503.42004
[35] S.Steinerberger and A.Tsyvinski, ‘On Vickrey’s income averaging’, National Bureau of Economic Research working paper #27024 (2020).
[36] L.Trefethen, Approximation theory and approximation practice (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2020). · Zbl 1437.41001
[37] E. T.Whittaker, ‘On the functions which are represented by the expansions of the interpolation‐theory’, Proc. Roy. Soc. Edinburgh35 (1915) 181-194. · JFM 45.1275.02
[38] A.Yuille and T. A.Poggio, ‘Scaling theorems for zero crossings’, IEEE Trans. Pattern Anal. Mach. Intell.1 (1986) 15-25. · Zbl 0575.94001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.