×

Polynomial sequences in discrete nilpotent groups of step 2. (English) Zbl 1543.37009

Summary: We discuss some of our work on averages along polynomial sequences in nilpotent groups of step 2. Our main results include boundedness of associated maximal functions and singular integrals operators, an almost everywhere pointwise convergence theorem for ergodic averages along polynomial sequences, and a nilpotent Waring theorem. Our proofs are based on analytical tools, such as a nilpotent Weyl inequality, and on complex almost-orthogonality arguments that are designed to replace Fourier transform tools, which are not available in the noncommutative nilpotent setting. In particular, we present what we call a nilpotent circle method that allows us to adapt some of the ideas of the classical circle method to the setting of nilpotent groups.

MSC:

37A46 Relations between ergodic theory and harmonic analysis
37A30 Ergodic theorems, spectral theory, Markov operators
42B25 Maximal functions, Littlewood-Paley theory
45P05 Integral operators

References:

[1] T. Austin, A proof of Walshas convergence theorem using couplings, Int. Math. Res. Not. IMRN 15 (2015), 6661-6674. · Zbl 1372.37012
[2] T. Austin, On the norm convergence of non-conventional ergodic averages, Ergodic Theory Dynam. Systems 30 (2010), 321-338. · Zbl 1206.37003
[3] A. Bellow, Measure Theory Oberwolfach 1981. in: Proceedings of the Conference held at Oberwolfach, June 21-27, 1981. Lecture Notes in Mathematics 945, editors D. Kölzow and D. Maharam-Stone. Springer-Verlag Berlin Heidelberg (1982), Section: Two problems submitted by A. Bellow, pp. 429-431. · Zbl 0481.00006
[4] V. Bergelson, Weakly mixing PET, Ergodic Theory Dynam. Systems 7 (1987), no. 3, 337-349. · Zbl 0645.28012
[5] V. Bergelson, Ergodic Ramsey theory - an update, ergodic theory of Zd-actions, in: M. Pollicott and K. Schmidt (Eds), London Mathematical Society Lecture Note Series, vol. 228, 1996, pp. 1-61. · Zbl 0846.05095
[6] V. Bergelson, Combinatorial and diophantine applications of ergodic theory (with appendices by A. Leibman and by A. Quas and M. Wierdl), in: Handbook of Dynamical Systems B.Hasselblatt and A. Katok, (Eds.), Vol. 1B, Elsevier, 2006, pp. 745-841.
[7] V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden and Szemerédi’s theorems, J. Amer. Math. Soc. 9 (1996), 725-753. · Zbl 0870.11015
[8] V. Bergelson and A. Leibman, A nilpotent Roth theorem, Invent. Math. 147 (2002), 429-470. · Zbl 1042.37001
[9] B. J. Birch, Forms in many variables, Proc. R. Soc. Lond. A 265 (1962), 245-263. · Zbl 0103.03102
[10] G. Birkhoff, Proof of the ergodic theorem, Proc. Natl. Acad. Sci. USA 17 (1931), no. 12, 656-660. · JFM 57.1011.02
[11] J. Bourgain, On the maximal ergodic theorem for certain subsets of the integers, Israel J. Math. 61 (1988), 39-72. · Zbl 0642.28010
[12] J. Bourgain, On the pointwise ergodic theorem on Lp for arithmetic sets, Israel J. Math. 61 (1988), 73-84. · Zbl 0642.28011
[13] J. Bourgain, Pointwise ergodic theorems for arithmetic sets, with an appendix by the author, H. Furstenberg, Y. Katznelson and D.S. Ornstein, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 5-45. · Zbl 0705.28008
[14] J. Bourgain, Double recurrence and almost sure convergence, J. Reine Angew. Math. 404 (1990), 140-161. · Zbl 0685.28008
[15] Z. Buczolich and R. D. Mauldin, Divergent square averages, Ann. Math. 171 (2010), no. 3, 1479-1530. · Zbl 1200.37003
[16] A. Calderón, Ergodic theory and translation invariant operators, Proc. Natl. Acad. Sci. USA 59 (1968), 349-353. · Zbl 0185.21806
[17] M. Christ, Hilbert transforms along curves: I. nilpotent groups, Ann. Math. 122/3 (1985), 575-596. · Zbl 0593.43011
[18] M. Christ, A. Nagel, E. M. Stein, and S. Wainger, Singular and maximal Radon transforms: analysis and geometry, Ann. Math. 150 (1999), no. 2, 489-577. · Zbl 0960.44001
[19] Q. Chu, N. Frantzikinakis, and B. Host, Ergodic averages of commuting transformations with distinct degree polynomial iterates, Proc. London. Math. Soc. 102 (2011), no. 5, 801-842. · Zbl 1218.37009
[20] L. J. Corwin and F. P. Greenleaf, Representations of nilpotent Lie groups and their applications. Part I. Basic theory and examples, Cambridge Studies in Advanced Mathematics, vol. 18, Cambridge University Press, Cambridge, 1990. · Zbl 0704.22007
[21] H. Davenport, Cubic Forms in Thirty-two Variables, Phil. Trans. R. Soc. Lond. A 251 (1959), 193-232. · Zbl 0084.27202
[22] H. Davenport, Analytic Methods for Diophantine Equations and Diophantine Inequalities, Cambridge University Press, Cambridge, 1959.
[23] N. Frantzikinakis, Some open problems on multiple ergodic averages, Bull. Hellenic Math. Soc. 60 (2016), 41-90. · Zbl 1425.37004
[24] N. Frantzikinakis and B. Kra, Polynomial averages converge to the product of integrals, Israel J. Math. 148 (2005), 267-276. · Zbl 1155.37303
[25] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemeredi on arithmetic progressions, J. Anal. Math. 31 (1977), 204-256. · Zbl 0347.28016
[26] H. Furstenberg, Problems Session, Conference on Ergodic Theory and Applications, University of New Hampshire, Durham, NH, June 1982, .
[27] H. Furstenberg, Nonconventional ergodic averages, The legacy of John von Neumann (Hempstead, NY, 1988), Proceedings of Symposia in Pure Mathematics, vol. 50, Amer. Math. Soc. Providence, RI, 1990, pp. 43-56. · Zbl 0711.28006
[28] H. Furstenberg and B. Weiss, A mean ergodic theorem for 1N∑n=1Nf(Tnx)g(Tn2x), Convergence in Ergodic Theory and Probability (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., vol. 5, De Gruyter, Berlin, 1996, pp. 193-227. · Zbl 0869.28010
[29] M. J. Greenberg, Lectures on Forms in Many Variables, W.A. Benjamin, Inc., New York, New York, 1969. · Zbl 0185.08304
[30] D. Hilbert, Beweis fü r die Darstellbarkeit der ganzen zahlen durch eine feste Anzahl n-ter Potenzen (Waringsches Problem), Math. Ann. 67 (1909), 281-300. · JFM 40.0236.03
[31] B. Host and B. Kra, Non-conventional ergodic averages and nilmanifolds, Ann. Math. 161 (2005), 397-488. · Zbl 1077.37002
[32] B. Host and B. Kra, Convergence of polynomial ergodic averages, Israel J. Math. 149 (2005), 1-19. · Zbl 1085.28009
[33] Y.-Q. Hu, Polynomial maps and polynomial sequences in groups, Available at arXiv:2105.08000.
[34] Y.-Q. Hu, Waring’s problem for locally nilpotent groups: the case of discrete Heisenberg groups, Available at arXiv:2011.06683.
[35] A. Ionescu, A. Magyar, M. Mirek, and T. Z. Szarek, Polynomial averages and pointwise ergodic theorems on nilpotent groups, Invent. Math. 231 (2023), 1023-1140. · Zbl 1514.37015
[36] A. Ionescu, A. Magyar, E. M. Stein, and S. Wainger, Discrete Radon transforms and applications to ergodic theory, Acta Math. 198 (2007), 231-298. · Zbl 1139.42002
[37] A. Ionescu, A. Magyar, and S. Wainger, Averages along polynomial sequences in discrete nilpotent Lie groups: Singular Radon transforms, In: Advances in Analysis: the Legacy of Elias M. Stein, Princeton Mathematical Series, vol. 50, Princeton University Press, Princeton, NJ, 2014, pp. 146-188. · Zbl 1302.43004
[38] A. D. Ionescu and S. Wainger, Lp boundedness of discrete singular Radon transforms, J. Amer. Math. Soc. 19 (2005), no. 2, 357-383. · Zbl 1158.42007
[39] B. Krause, Discrete analogoues in harmonic analysis: maximally monomially modulated singular integrals related to Carleson’s theorem, Available at arXiv:1803.09431.
[40] B. Krause, M. Mirek, and T. Tao, Pointwise ergodic theorems for non-conventional bilinearpolynomial averages, Ann. Math. 195 (2022), no. 3, 997-1109. · Zbl 1505.37010
[41] P. LaVictoire, Universally L1-bad arithmetic sequences, J. Anal. Math. 113 (2011), no. 1, 241-263. · Zbl 1220.37005
[42] A. Leibman, Convergence of multiple ergodic averages along polynomials of several variables, Israel J. Math. 146 (2005), 303-315. · Zbl 1080.37002
[43] D. Lépingle, La variation d’ordre p des semi-martingales, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 36 (1976), 295-316. · Zbl 0325.60047
[44] A. Magyar, E. M. Stein, and S. Wainger, Discrete analog in harmonic analysis: spherical averages, Ann. Math. 155 (2002), 189-208. · Zbl 1036.42018
[45] A. Magyar, E. M. Stein, and S. Wainger, Maximal operators associated to discrete subgroups of nilpotent Lie groups, J. Anal. Math. 101 (2007), 257-312. · Zbl 1149.22009
[46] M. Mirek, E. M. Stein, and B. Trojan, ℓp(Zd) -estimates for discrete operators of Radon type: Variational estimates, Invent. Math. 209 (2017), no. 3, 665-748. · Zbl 1397.42006
[47] M. Mirek, E. M. Stein, and P. Zorin-Kranich, A bootstrapping approach to jump inequalities and their applications, Anal. PDE 13 (2020), no. 2, 527-558. · Zbl 1437.42023
[48] M. Mirek, E. M. Stein, and P. Zorin-Kranich, Jump inequalities for translation-invariant operators of Radon type on Zd, Adv. Math. 365 (2020), Article ID 107065, pp. 57. · Zbl 1436.42022
[49] L. Pierce, Discrete fractional Radon transforms and quadratic forms, Duke Math. J. 161 (2012), 69-106. · Zbl 1246.44002
[50] L. Pierce and P.-L. Yung, A polynomial Carleson operator along the paraboloid, Rev. Mat. Iberoam. 35 (2019), 339-422. · Zbl 1423.42031
[51] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals I. Oscillatory integrals, J. Funct. Anal. 73 (1987), 179-194. · Zbl 0622.42010
[52] E. M. Stein and S. Wainger, Discrete analog in harmonic analysis, I: ℓ2 estimates for singular Radon transforms, Amer. J. Math. 121 (1999), 1291-1336. · Zbl 0945.42009
[53] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199-245. · Zbl 0303.10056
[54] T. Tao, Norm convergence of multiple ergodic averages for commuting transformations, Ergodic Theory Dynam. Syst. 28 (2008), 657-688. · Zbl 1181.37004
[55] I. M. Vinogradov, The method of trigonometrical sums in the theory of numbers. (Russian), Trav. Inst. Math. Stekloff 23 (1947). · Zbl 0041.37002
[56] J. von Neumann, Proof of the quasi-ergodic hypothesis, Proc. Natl. Acad. Sci. USA 18 (1932), 70-82. · Zbl 0004.31004
[57] M. Walsh, Norm convergence of nilpotent ergodic averages, Ann. Math. 175 (2012), no. 3, 1667-1688. · Zbl 1248.37008
[58] T. D. Wooley, Nested efficient congruencing and relatives of Vinogradov’s mean value theorem, Proc. London Math. Soc. 118 (2019), no. 4, 942-1016. · Zbl 1456.11149
[59] T. Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc. 20 (2007), 53-97. · Zbl 1198.37014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.