×

Numerical approach to simulating turbulent flow of a viscoelastic polymer solution. (English) Zbl 1047.76524

Summary: In this paper, we present two new numerical algorithms for updating the equations of motion for a viscoelastic fluid that can be described by the finite extensible nonlinear elastic polymer model with the closure proposed by Peterlin (so called FENE-P model) in a transient calculation. In particular, our algorithms address two difficulties found in earlier formulations. First, the polymer extension, represented by the trace of the conformation tensor, can numerically exceed the finite extensible length causing the restoring spring force to change sign and the calculation to rapidly diverge. In our formulations, we have redefined the conformation tensor so that this possibility no longer exists. Secondly, the conformation tensor must remain symmetric and positive definite at all times for the calculation to remain stable. The accumulation of numerical errors can cause loss of this property, leading to the growth of Hadamard instabilities [R. Sureeshkumar, A. N. Beris, J. Non-Newtonian Fluid Mech. 60, 53–80 (1995)]. We present two matrix decompositions that enable us to construct the conformational tensor in a manner that ensures positive definiteness. Numerical tests of the new algorithms show significant departures from other approaches that rely on filtering to remove the instabilities.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76A10 Viscoelastic fluids
76M20 Finite difference methods applied to problems in fluid mechanics
76M22 Spectral methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Bird, R. B.; Armstrong, R. C.; Hassager, O., Dynamics of Polymeric Liquids, vol. 1 (1987), Wiley: Wiley New York
[2] Larson, R. G.; Hu, H.; Smith, D. E.; Chu, S., Brownian dynamics simulations of a DNA molecule in an extensional flow field, J. Rheol., 43, 267-304 (1999)
[3] Li, L.; Larson, R. G.; Sridhar, T., Brownian dynamics simulations of dilute polystyrene solutions, J. Rheol., 44, 291 (2000)
[4] Harrison, G. M.; Remmelgas, J.; Leal, L. G., The dynamics of ultradilute polymer solutions in transient flow: comparison of dumbbell-based theory and experiment, J. Rheol., 42, 1039-1058 (1998)
[5] Peterlin, A., Streaming birefringence of soft linear macromolecules with finite chain length, Polymer, 2, 257 (1961)
[6] Dupret, F.; Marchal, J. M., Loss of evolution in the flow of viscoelastic fluids, J. Non-Newtonian Fluid Mech., 20, 143-171 (1986) · Zbl 0629.76008
[7] Sureshkumar, R.; Beris, A. N., Effect of artificial stress diffusivity on the stability of numerical calculations and the flow dynamics of time-dependent viscoelastic flows, J. Non-Newtonian Fluid Mech., 60, 53-80 (1995)
[8] Beris, A. N.; Sureshkumar, R., Simulation of time-dependent viscoelastic channel Poiseuille flow at high reynolds numbers, Chem. Eng. Sci., 51, 1451-1471 (1997)
[9] Sureshkumar, R.; Beris, A. N.; Handler, R. A., Direct numerical simulation of turbulent channel flow of a polymer solution, Phys. Fluids, 9, 743-755 (1997)
[10] Dimitropoulos, C. D.; Sureshkumar, R.; Beris, A. N., Direct numerical simulation of viscoelastic turbulent channel flow exhibiting drag reduction: effect of the variation of rheological parameters, J. Non-Newtonian Fluid Mech., 79, 433-468 (1998) · Zbl 0960.76057
[11] Dimitropoulos, C. D.; Sureshkumar, R.; Beris, A. N.; Handler, R. A., Budgets of Reynolds stress, kinetic energy and streamwise enstrophy in viscoelastic turbulent channel flow, Phys. Fluids, 13, 1016-1027 (2001) · Zbl 1184.76137
[12] Eckhardt, B.; Kronjäger, J.; Schumacher, J., Stretching of polymers in a turbulent environment, Comput. Phys. Commun., 147, 538-543 (2002) · Zbl 0994.82571
[13] Ilg, P.; de Angelis, E.; Karlin, I. V.; Casciola, C. M.; Succi, S., Polymer dynamics in wall turbulent flow, Europhys. Lett., 58, 616-622 (2002)
[14] Min, T.; Yoo, J. Y.; Choi, H., Effect of spatial discretization schemes on numerical solutions of viscoelastic fluid flows, J. Non-Newtonian Fluid Mech., 100, 27-47 (2001) · Zbl 1134.76409
[15] Y. Dubief, S.K. Lele, Direct numerical simulation of polymer flow, in: Center for Turbulence Research Annual Research Briefs, NASA Ames/Stanford University, 2001; Y. Dubief, S.K. Lele, Direct numerical simulation of polymer flow, in: Center for Turbulence Research Annual Research Briefs, NASA Ames/Stanford University, 2001
[16] Ottino, J. M., The Kinematics of Mixing: Stretching, Chaos and Transport (1989), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0721.76015
[17] Sureshkumar, R.; Beris, A. N., Uniformly valid approximations for the conformational integrals resulting from Gaussian closure in the Hookean dumbbell model with internal viscosity, J. Rheol., 39, 1361-1384 (1995)
[18] Eswaran, V.; Pope, S. B., An examination of forcing in direct numerical simulations of turbulence, Comput. Fluids, 16, 257-278 (1988) · Zbl 0662.76069
[19] Azaiez, J.; Homsy, G. M., Numerical simulation of non-Newtonian free shear flows at high Reynolds numbers, J. Non-Newtonian Fluid Mech., 52, 333-374 (1994)
[20] Beris, A. N.; Edwards, B. J., Thermodynamics of Flowing Systems With Internal Microstructure (1994), Oxford University Press: Oxford University Press New York
[21] Hulsen, M. A., A sufficient condition for a positive definite configuration tensor in differential models, J. Non-Newtonian Fluid Mech., 38, 93-100 (1990)
[22] Lesieur, M., Turbulence in Fluids, Stochastic and Numerical Modeling (1987), Nijhoff: Nijhoff Boston · Zbl 0627.76001
[23] Patterson, G. S.; Orszag, S. A., Spectral calculation of isotropic turbulence: efficient removal of aliasing interactions, Phys. Fluids, 14, 2538-2541 (1971) · Zbl 0225.76033
[24] Zemach, C., The Handbook of Fluid Dynamics, Chapter Mathematics (1998), CRC Press: CRC Press Boca Raton · Zbl 0978.76001
[25] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16-42 (1991) · Zbl 0759.65006
[26] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics (1988), Springer: Springer New York · Zbl 0658.76001
[27] Sundaram, S.; Collins, L. R., Collision statistics in an isotropic, particle-laden turbulent suspension I. direct numerical simulations, J. Fluid Mech., 335, 75-109 (1997) · Zbl 0901.76089
[28] Iserles, A., Lie-group methods, Acta Numer., 215-365 (2000) · Zbl 1064.65147
[29] E.G. Moody, L.R. Collins, Effect of mixing on nucleation and growth of titania particles, Aerosol Sci. Tech. (2002) (accepted); E.G. Moody, L.R. Collins, Effect of mixing on nucleation and growth of titania particles, Aerosol Sci. Tech. (2002) (accepted)
[30] Virk, P. S., Drag reduction fundamentals, AIChE J., 21, 625-656 (1975)
[31] Lumley, J. L., Drag reduction in turbulent flow by polymer additives, J. Polymer Sci.: Macromolec. Rev., 7, 263-290 (1973)
[32] van Doorn, E.; White, C. M.; Sreenivasan, K. R., The decay of grid turbulence in polymer and surfactant solutions, Phys. Fluids, 11, 2387-2393 (1999) · Zbl 1147.76547
[33] Warholic, M. D.; Massah, H.; Hanratty, T. J., Influence of drag-reducing polymers on turbulence: effects of reynolds number, concentration and mixing, Exp. Fluids, 27, 461-472 (1999)
[34] Batchelor, G. K., Small-scale variation of convected quantities like temperature in a turbulent fluid. Part 1. General discussion and the case of small conductivity, J. Fluid Mech., 5, 113-133 (1959) · Zbl 0085.39701
[35] El-Kareh, A. W.; Leal, L. G., Existence of solutions for all Deborah numbers for a non-Newtonian model modified to include diffusion, J. Non-Newtonian Fluid Mech., 33, 257-287 (1989) · Zbl 0679.76004
[36] Bhave, A. V.; Armstrong, R. B.; Brown, R. A., Kinetic theory and rheology of dilute, nonhomogeneous polymer solutions, J. Chem. Phys., 95, 2988-3000 (1991)
[37] Herr, S.; Wang, L.-P.; Collins, L. R., EDQNM model of a passive scalar with a uniform mean gradient, Phys. Fluids, 8, 1588-1608 (1996) · Zbl 1032.76571
[38] Bogucki, D.; Domaradzki, J. A.; Yeung, P.-K., Direct numerical simulations of passive scalars with Pr>1 advected by turbulent flow, J. Fluid Mech., 343, 111-130 (1997) · Zbl 0900.76440
[39] Shaqfeh, E. S.G., Fully elastic instabilities in viscometric flows, Annu. Rev. Fluid Mech., 28, 129-185 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.