×

Tate-Shafarevich groups and algebras. (English) Zbl 1534.17020

Summary: The Tate-Shafarevich set of a group \(G\) defined by Takashi Ono coincides, in the case where \(G\) is finite, with the group of outer class-preserving automorphisms of \(G\) introduced by Burnside. We consider analogs of this important group-theoretic object for Lie algebras and associative algebras and establish some new structure properties thereof. We also discuss open problems and eventual generalizations to other algebraic structures.

MSC:

17B40 Automorphisms, derivations, other operators for Lie algebras and super algebras
17B56 Cohomology of Lie (super)algebras
20J06 Cohomology of groups

References:

[1] Abdollahi, A. and Endimioni, G., On conditions for an endomorphism to be an automorphism, Algebra Colloq.12 (2005) 709-714. · Zbl 1091.20022
[2] Adashev, J. K. and Kurbanbaev, T. K., Almost inner derivations of some nilpotent Leibniz algebras, J. Sib. Fed. Univ. Mat. Phys.13 (2020) 733-745. · Zbl 1534.17008
[3] Arutyunov, A. A. and Kosolapov, L. M., Derivations of group rings for finite and FC groups, Finite Fields Appl.76 (2021) Paper No. 101921, 31 pp. · Zbl 1477.13050
[4] Ayupov, S., Omirov, B. and Rakhimov, I., Leibniz Algebras: Structure and Classification (CRC Press, Taylor & Francis Group, 2020). · Zbl 1426.17001
[5] Benkart, G., Gregory, T. and Premet, A., The recognition theorem for graded Lie algebras in prime characteristic, Mem. Amer. Math. Soc.197 (2009) 920. · Zbl 1167.17004
[6] Bourbaki, N., Groupes et Algèbres de Lie, Chap. 1, (Hermann, Paris, 1972). · Zbl 0244.22007
[7] Burde, D., Dekimpe, K. and Verbeke, B., Almost inner derivations of Lie algebras, J. Algebra Appl.17(11) (2018) 1850214, 26 pp. · Zbl 1429.17018
[8] Burde, D., Dekimpe, K. and Verbeke, B., Almost inner derivations of Lie algebras, II, Intern. J. Algebra Comput.31 (2021) 341-364. · Zbl 1475.17028
[9] Burde, D., Dekimpe, K. and Verbeke, B., Almost inner derivations of \(2\)-step nilpotent Lie algebras of genus \(2\), Linear Algebra Appl.608 (2021) 185-202. · Zbl 1472.17042
[10] Burde, D. and Moens, W. A., A Zassenhaus conjecture and CPA-structures on simple modular Lie algebras, J. Algebra559 (2020) 529-546. · Zbl 1486.17030
[11] Burde, D., Moens, W. A. and Páez-Guillán, P., Counterexamples to the Zassenhaus conjecture on simple modular Lie algebras, J. Algebra629 (2023) 21-37. · Zbl 1541.17010
[12] W. Burnside, Theory of Groups of Finite Order, 2nd edn. (Cambridge University Press, Cambridge, 1911); reprinted by (Dover Publications, New York, 1955). · JFM 42.0151.02
[13] Burnside, W., On the outer automorphisms of a group, Proc. London Math. Soc.11 (1913) 40-42. · JFM 43.0198.03
[14] Cartan, H. and Eilenberg, S., Homological Algebra (Princeton University Press, Princeton, NJ, 1956). · Zbl 0075.24305
[15] Chaparro, C., Schroll, S. and Solotar, A., On the Lie algebra structure of the first Hochschild cohomology of gentle algebras and Brauer graph algebras, J. Algebra558 (2020) 293-326. · Zbl 1475.16016
[16] Dixmier, J., Algèbres Enveloppantes (Gauthier-Villars, Paris, Brussels, Montreal, 1974). · Zbl 0308.17007
[17] Eisele, F. and Raedschelders, T., On solvability of the first Hochschild cohomology of a finite-dimensional algebra, Trans. Amer. Math. Soc.373 (2020) 7607-7638. · Zbl 1476.16006
[18] Feit, W. and Seitz, G. M., On finite rational groups and related topics, Illinois J. Math.33 (1989) 103-131. · Zbl 0701.20005
[19] Gordon, C. S. and Wilson, E. N., Isospectral deformations of compact solvmanifolds, J. Differential Geom.19 (1984) 241-256. · Zbl 0523.58043
[20] M. Goze and E. Remm, Lie algebras with associative structures. Applications to the study of 2-step nilpotent Lie algebras, preprint (2012), arXiv:1201.2674. · Zbl 1360.17012
[21] Grishkov, A., Rasskazova, M., Sabinina, L. and Salim, M., On Malcev algebras nilpotent by Lie center and corresponding analytic Moufang loops, J. Algebra575 (2021) 67-77. · Zbl 1493.17025
[22] Humphreys, J. E., Linear Algebraic Groups, 2nd edn. (Springer-Verlag, New York, 1981). · Zbl 0471.20029
[23] Jibladze, M. and Pirashvili, T., Lie theory for symmetric Leibniz algebras, J. Homotopy Relat. Struct.15 (2020) 167-183. · Zbl 1477.17021
[24] F. S. Kerdman, Analytic Moufang loops in the large, Algebra i Logika18(5) (1979) 523-555; Algebra Logic18(5) (1979) 325-347. · Zbl 0457.22002
[25] Kunyavskiĭ, B., Local-global invariants of finite and infinite groups: Around Burnside from another side, Expo. Math.31 (2013) 256-273. · Zbl 1304.20049
[26] Kunyavskiĭ, B., Some new parallels between groups and Lie algebras, or what can be simpler than the multiplication table?Eur. Math. Soc. Newsl.118 (2020) 5-13. · Zbl 1475.17018
[27] Kuz’min, E. N. and Shestakov, I. P., Non-associative structures, in Algebra, VI, , Vol. 57 (Springer, Berlin, 1995), pp. 197-280.
[28] Linckelmann, M. and Rubio y Degrassi, L., On the Lie algebra structure of \(H H^1(A)\) of a finite-dimensional algebra \(A\), Proc. Amer. Math. Soc.148 (2020) 1879-1890. · Zbl 1441.16013
[29] Loday, J.-L., Cyclic Homology (Springer, Berlin, 1992). · Zbl 0780.18009
[30] Loday, J.-L., Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math.39 (1993) 269-293. · Zbl 0806.55009
[31] Loday, J.-L., Dialgebras, in Dialgebras and Related Operads, , Vol. 1763 (Springer, Berlin, 2001), pp. 7-66. · Zbl 0970.00010
[32] Loday, J.-L. and Pirashvili, T., Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann.296 (1993) 139-158. · Zbl 0821.17022
[33] Magnin, L., Adjoint and trivial cohomologies of nilpotent complex Lie algebras of dimension \(\leq7\), Int. J. Math. Math. Sci.2008 (2008) 805305. · Zbl 1243.17005
[34] J. S. Milne, Lie Algebras, Algebraic Groups, and Lie Groups, Course Notes (2013), jmilne.org/math/CourseNotes/LAG.pdf.
[35] Murai, M., Blocks of normal subgroups, automorphisms of groups, and the Alperin-McKay conjecture, Kyoto J. Math.54 (2014) 199-238. · Zbl 1328.20016
[36] Onishchik, A. L. and Vinberg, E. B., Lie Groups and Algebraic Groups (Springer, Berlin, 1990). · Zbl 0722.22004
[37] Ono, T., A note on Shafarevich-Tate sets for finite groups, Proc. Japan Acad. Ser. A Math. Sci.74(5) (1998) 77-79. · Zbl 1001.11042
[38] Ono, T., Shafarevich-Tate sets for profinite groups, Proc. Japan Acad. Ser. A Math. Sci.75(6) (1999) 96-97. · Zbl 0997.20036
[39] Pevzner, M. and Torossian, C., Isomorphisme de Duflo et la cohomologie tangentielle, J. Geom. Phys.51 (2004) 487-506. · Zbl 1104.53081
[40] Pirashvili, T., On Leibniz homology, Ann. Inst. Fourier.44 (1994) 401-411. · Zbl 0821.17023
[41] Pollack, R. D., Algebras and their automorphism groups, Commun. Algebra17 (1989) 1843-1866. · Zbl 0682.16022
[42] Rubio y Degrassi, L., Schroll, S. and Solotar, A., The first Hochschild cohomology as a Lie algebra, Quaest. Math. (2022). https://doi.org/10.2989/16073606.2022.2115424. · Zbl 1541.16012
[43] Sagle, A., Malcev algebras, Trans. Amer. Math. Soc.101 (1961) 426-458. · Zbl 0101.02302
[44] C.-H. Sah, Automorphisms of finite groups, J. Algebra10 (1968) 47-68; Addendum 44 (1977) 573-575. · Zbl 0353.20025
[45] Schafer, R. D., Inner derivations of non-associative algebras, Bull. Amer. Math. Soc.55 (1949) 769-776. · Zbl 0033.34803
[46] Sheikh-Mohseni, S. and Saeedi, F., On the dimension of a special subalgebra of derivations of nilpotent Lie algebras, Bull. Iranian Math. Soc.43 (2017) 79-93. · Zbl 1373.17017
[47] Sheikh-Mohseni, S. and Saeedi, F., Camina Lie algebras, Asian-Eur. J. Math.11(5) (2018) 11. · Zbl 1459.17026
[48] Sheikh-Mohseni, S., Saeedi, F. and Badrkhani Asl, M., On special subalgebras of derivations of Lie algebras, Asian-Eur. J. Math.8(2) (2015) 1550032. · Zbl 1376.17027
[49] Strametz, C., The Lie algebra structure on the first Hochschild cohomology group of a monomial algebra, J. Algebra Appl.5 (2006) 245-270. · Zbl 1163.16300
[50] Wada, H., “Hasse principle” for \(\text{GL}_n(D)\), Proc. Japan Acad. Ser. A Math. Sci.76 (2000) 44-46. · Zbl 0967.20027
[51] Weinstein, A., The modular automorphism group of a Poisson manifold, J. Geom. Phys.23 (1997) 379-394. · Zbl 0902.58013
[52] M. K. Yadav, Class preserving automorphisms of finite p-groups: A survey, in Groups St. Andrews 2009 in Bath, Vol. 2, London Mathematical Society Lecture Note Series, Vol. 388 (Cambridge University Press, Cambridge, 2011), pp. 569-579. · Zbl 1231.20024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.