×

Computation of zeros of monotone type mappings: on Chidume’s open problem. (English) Zbl 1435.47058

Summary: For \(p\geq 2\), let \(E\) be a 2-uniformly smooth and \(p\)-uniformly convex real Banach space and let \(A:E\to E^{\ast }\) be a Lipschitz and strongly monotone mapping such that \(A^{-1}(0)\neq \emptyset \). For given \(x_1\in E\), let \(\{x_n\}\) be generated by the algorithm \(x_{n+1}=J^{-1}(Jx_n- \lambda Ax_n)\), \(n\geq 1\), where \(J\) is the normalized duality mapping from \(E\) into \(E^{\ast }\) and \(\lambda\) is a positive real number in \((0,1)\) satisfying suitable conditions. Then it is proved that \(\{x_n\}\) converges strongly to the unique point \(x^{\ast }\in A^{-1}(0)\). Furthermore, our theorems provide an affirmative answer to the open problem formulated by C. E. Chidume, A. U. Bello and B. Usman [“Krasnoselskii-type algorithm for zeros of strongly monotone Lipschitz maps in classical Banach spaces”, SpringerPlus 4, Art. 297, 9 p. (2015; doi:10.1186/s40064-015-1044-1)]. Finally, applications to convex minimization problems are given.

MSC:

47J05 Equations involving nonlinear operators (general)
47J25 Iterative procedures involving nonlinear operators
47H05 Monotone operators and generalizations
47N10 Applications of operator theory in optimization, convex analysis, mathematical programming, economics
Full Text: DOI

References:

[1] Agarwal, R. P., O’Regan, D. and Sahu, D. R., Fixed Point Theory and Its Applications (Springer, New York, 2009). · Zbl 1176.47037
[2] Alber, Ya., ‘Metric and generalized projection operator in Banach space: properties and applications’, in: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type (ed. Kartsatos, A. G.) (Marcel Dekker, New York, 1996), 15-50. · Zbl 0883.47083
[3] Alber, Ya. and Guerre-Delabiere, S., ‘On the projection methods for fixed point problems’, Analysis (Munich)21(1) (2001), 17-39. · Zbl 0985.47044
[4] Alber, Ya. and Ryazantseva, I., Nonlinear Ill Posed Problems of Monotone Type (Springer, London, 2006). · Zbl 1086.47003
[5] Berinde, V., Iterative Approximation of Fixed Points, (Springer, London, 2007). · Zbl 1165.47047
[6] Berinde, V., Maruster, S. and Rus, I. A., ‘An abstract point of view on iterative approximation of fixed points of nonself operators’, J. Nonlinear Convex Anal.15(5) (2014), 851-865. · Zbl 1310.47089
[7] Brézis, H. and Lions, P. L., ‘Produits infinis de resolvents’, Israel J. Math.29 (1978), 329-345. · Zbl 0387.47038
[8] Browder, F. E., ‘Nonlinear mappings of nonexpansive and accretive type in Banach spaces’, Bull. Amer. Math. Soc.73 (1967), 875-882. · Zbl 0176.45302
[9] Bynum, W. L., ‘Weak parallelogram laws for Banach spaces’, Canad. Math. Bull.19(3) (1976), 269-275. · Zbl 0347.46015
[10] Censor, Y. and Reich, S., ‘Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization’, Optimization37(4) (1996), 323-339. · Zbl 0883.47063
[11] Chidume, C. E., Geometric Properties of Banach Spaces and Nonlinear iterations, (Springer, London, 2009). · Zbl 1167.47002
[12] Chidume, C. E., ‘An approximation method for monotone Lipschitzian operators in Hilbert-spaces’, J. Aust. Math. Soc. Ser. A41 (1986), 59-63. · Zbl 0622.47060
[13] Chidume, C. E., ‘Convergence theorems for asymptotically pseudo-contractive mappings’, Nonlinear Anal.49 (2002), 1-11. · Zbl 1014.47030
[14] Chidume, C. E., ‘Iterative approximation of fixed points of Lipschitzian strictly pseudo-contractive mappings’, Proc. Amer. Math. Soc.99(2) (1987), 283-288. · Zbl 0646.47037
[15] Chidume, C. E. and Bashir, A., ‘Approximation of common fixed points for finite families of nonself asymptotically nonexpansive mappings in Banach spaces’, J. Math. Anal. Appl.326 (2007), 960-973. · Zbl 1112.47053
[16] Chidume, C. E., Bello, A. U. and Usman, B., ‘Krasnoselskii-type algorithm for zeros of strongly monotone Lipschitz maps in classical Banach spaces’, SpringerPlus4 (2015), 297.
[17] Chidume, C. E. and Chidume, C. O., ‘Convergence theorems for fixed points of uniformly continuous generalized Phi-hemi-contractive mappings’, J. Math. Anal. Appl.303 (2005), 545-554. · Zbl 1070.47055
[18] Chidume, C. E. and Chidume, C. O., ‘Convergence theorem for zeros of generalized Phi-quasi-accretive operators’, Proc. Amer. Math. Soc.134 (2006), 243-251. · Zbl 1072.47062
[19] Chidume, C. E. and Osilike, M. O., ‘Iterative solutions of nonlinear accretive operator equations in arbitrary Banach spaces’, Nonlinear Anal.36 (1999), 863-872. · Zbl 0935.47035
[20] Cioranescu, I., Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, (Springer, Dordrecht, 1990). · Zbl 0712.47043
[21] Deng, L., ‘On Chidume’s open question’, J. Math. Appl.174(2) (1993), 441-449. · Zbl 0784.47051
[22] Diemling, K., Nonlinear Functional Analysis (Springer, Berlin-Heidelberg, 1985). · Zbl 0559.47040
[23] Goebel, K. and Reich, S., Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, (Marcel Dekker, New York, 1984). · Zbl 0537.46001
[24] Kamimura, S. and Takahashi, W., ‘Strong convergence of proximal-type algorithm in Banach space’, SIAM J. Optim.13(3) (2002), 938-945. · Zbl 1101.90083
[25] Liu, L., ‘Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces’, J. Math. Anal. Appl.194(1) (1995), 114-125. · Zbl 0872.47031
[26] Martinet, B., ‘Regularization d’inéquations variationelles par approximations successives’, Revue Française d’Informatique et de Recherche Operationelle4 (1970), 154-159. · Zbl 0215.21103
[27] Minty, G. J., ‘Monotone (nonlinear) operator in Hilbert space’, Duke Math.29 (1962), 341-346. · Zbl 0111.31202
[28] Moudafi, A., ‘Alternating CQ-algorithm for convex feasibility and split fixed-point problems’, J. Nonlinear Convex Anal.15(4) (2004), 809-818. · Zbl 1393.47034
[29] Moudafi, A., ‘A relaxed alternating CQ-algorithm for convex feasibility problems’, Nonlinear Anal.79 (2003), 117-121. · Zbl 1256.49044
[30] Moudafi, A., ‘Proximal methods for a class of bilevel monotone equilibrium problems’, J. Global Optim.47(2) (2010), 45-52. · Zbl 1190.90125
[31] Moudafi, A. and Thera, M., ‘Finding a zero of the sum of two maximal monotone operators’, J. Optim. Theory Appl.94(2) (1997), 425-448. · Zbl 0891.49005
[32] Pascali, D. and Sburian, S., Nonlinear Mappings of Monotone Type (Editura Academiei, Bucharest, 1978). · Zbl 0423.47021
[33] Qihou, L., ‘The convergence theorems of the sequence of Ishikawa iterates for hemi-contractive mapping’, J. Math. Anal. Appl.148 (1990), 55-62. · Zbl 0729.47052
[34] Reich, S., ‘Extension problems for accretive sets in Banach spaces’, J. Funct. Anal.26 (1977), 378-395. · Zbl 0378.47037
[35] Reich, S., Iterative Methods for Accretive Sets in Banach Spaces (Academic Press, New York, 1978), 317-326. · Zbl 0495.47034
[36] Reich, S., ‘Constructive techniques for accretive and monotone operators’, in: Applied Non-Linear Analysis (Academic Press, New York, 1979), 335-345. · Zbl 0444.47042
[37] Reich, S. and Sabach, S., ‘A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces’, J. Nonlinear Convex Anal.10(3) (2009), 471-485. · Zbl 1180.47046
[38] Reich, S. and Sabach, S., ‘Two strong convergence theorems for a proximal method in reflexive Banach spaces’, Numer. Funct. Anal. Optim.31(1-3) (2010), 22-44. · Zbl 1200.47085
[39] Reich, S., ‘Strong convergent theorems for resolvents of accretive operators in Banach spaces’, J. Math. Anal. Appl.75 (1980), 287-292. · Zbl 0437.47047
[40] Rockafellar, R. T., ‘Monotone operator and the proximal point algorithm’, SIAM J. Control Optim.14 (1976), 877-898. · Zbl 0358.90053
[41] Takahashi, W. and Ueda, Y., ‘On Reich’s strong convergence theorems for resolvents of accretive operators’, J. Math. Anal. Appl.104(2) (1984), 546-553. · Zbl 0599.47084
[42] Weng, X. L., ‘Fixed point iteration for local strictly pseudo-contractive mappings’, Proc. Amer. Math. Soc.113(3) (1991), 727-731. · Zbl 0734.47042
[43] William, K. and Shahzad, N., Fixed Point Theory in Distance Spaces (Springer, Cham, 2014). · Zbl 1308.58001
[44] Xiao, R., ‘Chidume’s open problems and fixed point theorems’, Xichuan Daxue Xuebao35(4) (1998), 505-508. · Zbl 0927.47040
[45] Xu, Z. B., ‘A note on the Ishikawa iteration schemes’, J. Math. Anal. Appl.167 (1992), 582-587. · Zbl 0776.47042
[46] Xu, Z. B. and Roach, G. F., ‘Characteristic inequalities for uniformly convex and uniformly smooth Banach space’, J. Math. Anal. Appl.157 (1991), 189-210. · Zbl 0757.46034
[47] Xu, Z. B., Jiang, Y. L. and Roach, G. F., ‘A further necessary and sufficient condition for strong convergence of nonlinear contraction semigroups and of iteration methods for accretive operators in Banach spaces’, Proc. Edinb. Math. Soc.38(2) (1995), 1-12. · Zbl 0820.47074
[48] Xu, H. K., ‘Inequalities in Banach spaces with applications’, Nonlinear Anal.16(12) (1991), 1127-1138. · Zbl 0757.46033
[49] Xu, Y., ‘Existence and convergence for fixed points of mappings of the asymptotically nonexpansive type’, Nonlinear Anal.16 (1991), 1139-1146. · Zbl 0747.47041
[50] Zhou, H. and Jia, Y., ‘Approximating the zeros of accretive operators by the Ishikawa iteration process’, Abstr. Appl. Anal.1(2) (1996), 153-167. · Zbl 0945.47044
[51] Zhu, L., ‘Iteration solution of nonlinear equations involving m-accretive operators in Banach spaces’, J. Math. Anal. Appl.188 (1994), 410-415. · Zbl 0922.47061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.