×

The Zak transform on Gelfand-Shilov and modulation spaces with applications to operator theory. (English) Zbl 1455.42032

Summary: We characterize Gelfand-Shilov spaces, their distribution spaces and modulation spaces in terms of estimates of their Zak transforms. We use these results for general investigations of quasi-periodic functions and distributions. We also establish necessary and sufficient conditions for linear operators in order for these operators should be conjugations by Zak transforms.

MSC:

42C20 Other transformations of harmonic type
43A32 Other transforms and operators of Fourier type
42B35 Function spaces arising in harmonic analysis
46E10 Topological linear spaces of continuous, differentiable or analytic functions
46A16 Not locally convex spaces (metrizable topological linear spaces, locally bounded spaces, quasi-Banach spaces, etc.)
35A22 Transform methods (e.g., integral transforms) applied to PDEs
37A05 Dynamical aspects of measure-preserving transformations
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

References:

[1] Aoki, T., Locally bounded linear topological spaces, Proc. Imp. Acad. Tokyo, 18, 588-594 (1942) · Zbl 0060.26503 · doi:10.3792/pia/1195573733
[2] Becnel, JJ, Equivalence of topologies and Borel fields for countably-Hilbert spaces, Proc. Am. Math. Soc., 134, 581-590 (2006) · Zbl 1081.57019 · doi:10.1090/S0002-9939-05-08219-5
[3] Brezin, J., Harmonic analysis on nilmanifolds, Trans. Am. Math. Soc., 150, 611-618 (1970) · Zbl 0205.13203 · doi:10.1090/S0002-9947-1970-0279244-3
[4] Bölcskei, H., A necessary and sufficient condition for dual Weyl-Heisenberg frames to be compactly supported, J. Fourier Anal. Appl., 5, 409-419 (1999) · Zbl 0933.42029 · doi:10.1007/BF01261635
[5] Bölcskei, H.; Janssen, AJEM, Gabor frames, unimodularity, and window decay, J. Fourier Anal. Appl., 6, 255-276 (2000) · Zbl 0960.42008 · doi:10.1007/BF02511155
[6] Chung, J.; Chung, S-Y; Kim, D., Characterizations of the Gelfand-Shilov spaces via Fourier transforms, Proc. Am. Math. Soc., 124, 2101-2108 (1996) · Zbl 0871.46018 · doi:10.1090/S0002-9939-96-03291-1
[7] Cordero, E.; Pilipović, S.; Rodino, L.; Teofanov, N., Quasianalytic Gelfand-Shilov spaces with applications to localization operators, Rocky Mt. J. Math., 40, 1123-1147 (2010) · Zbl 1200.47065 · doi:10.1216/RMJ-2010-40-4-1123
[8] Eijndhoven, SJL, Functional analytic characterizations of the Gelfand-Shilov spaces \(S^\beta_\alpha \), Nederl. Akad. Wetensch. Indag. Math., 49, 133-144 (1987) · Zbl 0698.46034 · doi:10.1016/S1385-7258(87)80035-5
[9] Feichtinger, H.G.: Banach spaces of distributions of Wiener’s type and interpolation. In: Butzer, P., Nagy, BSz, Görlich, E. (eds.) Proceeding Conference Oberwolfach, Functional Analysis and Approximation, August 1980, International Series Numerical Mathematics, vol. 69, pp. 153-165. Birkhäuser Verlag, Basel, Boston, Stuttgart (1981) · Zbl 0465.43006
[10] Feichtinger, H.G.: Modulation spaces on locally compact abelian groups. Technical report, University of Vienna, Vienna, 1983; also. In: Krishna, M., Radha, R., Thangavelu, S. (eds.) Wavelets and their applications, Allied Publishers Private Limited, NewDehli Mumbai Kolkata Chennai Nagpur Ahmedabad Bangalore Hyderbad Lucknow. pp. 99-140 (2003)
[11] Feichtinger, HG, Modulation spaces: looking back and ahead, Sampl. Theory Signal Image Process., 5, 109-140 (2006) · Zbl 1156.43300
[12] Feichtinger, HG; Gröchenig, KH, Banach spaces related to integrable group representations and their atomic decompositions, I, J. Funct. Anal., 86, 307-340 (1989) · Zbl 0691.46011 · doi:10.1016/0022-1236(89)90055-4
[13] Feichtinger, HG; Gröchenig, KH, Banach spaces related to integrable group representations and their atomic decompositions, II, Monatsh. Math., 108, 129-148 (1989) · Zbl 0713.43004 · doi:10.1007/BF01308667
[14] Feichtinger, HG; Luef, F., Wiener amalgam spaces for the fundamental identity of Gabor analysis, Collect. Math., 57, 233-253 (2006) · Zbl 1135.39303
[15] Galperin, YV; Samarah, S., Time-frequency analysis on modulation spaces \(M^{p, q}_m, 0<p, q\le \infty \), Appl. Comput. Harmon. Anal., 16, 1-18 (2004) · Zbl 1040.42025 · doi:10.1016/j.acha.2003.09.001
[16] Gelfand, IM, Eigenfunction expansions for equations with periodic coefficients, Dokl. Akad. Nauk. SSSR, 73, 1117-1120 (1950) · Zbl 0037.34505
[17] Gelfand, IM; Shilov, GE, Generalized Functions, II-III (1968), New York: Academic Press, New York · Zbl 0159.18301
[18] Gröchenig, KH, Foundations of Time-Frequency Analysis (2001), Boston: Birkhäuser, Boston · Zbl 0966.42020
[19] Gröchenig, KH; Rodino, L.; Wong, MW, Weight functions in time-frequency analysis, Pseudodifferential Operators: Partial Differential Equations and Time-Frequency Analysis, 343-366 (2007), Berlin: Fields Institute Communications, Berlin · Zbl 1132.42313
[20] Gröchenig, KH; Zimmermann, G., Spaces of test functions via the STFT, J. Funct. Spaces Appl., 2, 25-53 (2004) · Zbl 1069.46021 · doi:10.1155/2004/498627
[21] Hörmander, L., The Analysis of Linear Partial Differential Operators (1983), Berlin: Springer, Berlin · Zbl 0521.35001
[22] Janssen, AJEM, Bargmann transform, Zak transform, and coherent states, J. Math. Phys, 23, 720-731 (1982) · Zbl 0486.46027 · doi:10.1063/1.525426
[23] Nicola, F.; Rodino, L., Global Pseudo-Differential Calculus on Euclidean Spaces, Pseudo-Differential Operators. Theory and Applications (2010), Basel: Birkhäuser Verlag, Basel · Zbl 1257.47002
[24] Pilipović, S., Generalization of Zemanian spaces of generalized functions which have orthonormal series expansions, SIAM J. Math. Anal., 17, 477-484 (1986) · Zbl 0604.46042 · doi:10.1137/0517037
[25] Pilipović, S., Structural theorems for periodic ultradistributions, Proc. Am. Math. Soc., 98, 261-266 (1986) · Zbl 0617.46043 · doi:10.2307/2045695
[26] Pilipović, S., Tempered ultradistributions, Boll. U.M.I., 7, 235-251 (1988) · Zbl 0657.46030
[27] Rauhut, H., Wiener amalgam spaces with respect to quasi-Banach spaces, Colloq. Math., 109, 345-362 (2007) · Zbl 1125.46022 · doi:10.4064/cm109-2-13
[28] Rauhut, H., Coorbit space theory for quasi-Banach spaces, Studia Math., 180, 237-253 (2007) · Zbl 1122.42018 · doi:10.4064/sm180-3-4
[29] Rolewicz, S., On a certain class of linear metric spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astrono. Phys., 5, 471-473 (1957) · Zbl 0079.12602
[30] Teofanov, N.; Boggiatto, P.; Rodino, L.; Toft, J.; Wong, MW, Ultra-distributions and time-frequency analysis, Pseudo-Differential Operators and Related Topics, Operator Theory: Advances and Applications, 173-191 (2006), Basel: Birkhäuser, Basel
[31] Teofanov, N., Gelfand-Shilov spaces and localization operators, Funct. Anal. Approx. Comput., 7, 135-158 (2015) · Zbl 1387.46005
[32] Tinaztepe, R.: Modulation spaces, BMO and the Zak transform, and minimising IPH functions over the unit simplex, Thesis (2010)
[33] Tinaztepe, R.; Heil, C., Modulation spaces, BMO, and the Balian-Low theorem, Sampl. Theory Signal Image Process., 11, 25-41 (2012) · Zbl 1346.42028
[34] Toft, J., The Bargmann transform on modulation and Gelfand-Shilov spaces, with applications to Toeplitz and pseudo-differential operators, J. Pseudo-Differ. Oper. Appl., 3, 145-227 (2012) · Zbl 1257.42033 · doi:10.1007/s11868-011-0044-3
[35] Toft, J.; Pilipović, S.; Toft, J., Gabor analysis for a broad class of quasi-Banach modulation spaces, Pseudo-Differential Operators, Generalized Functions, Operator Theory: Advances and Applications (2015), Basel: Birkhäuser, Basel · Zbl 1351.46004
[36] Toft, J., Images of function and distribution spaces under the Bargmann transform, J. Pseudo-Differ. Oper. Appl., 8, 83-139 (2017) · Zbl 1388.46030 · doi:10.1007/s11868-016-0165-9
[37] Toft, J.; Boggiatto, P.; Cordero, E.; de Gosson, M.; Feichtinger, HG; Nicola, F.; Oliaro, A.; Tabacco, A., Semi-continuous convolutions on weakly periodic Lebesgue spaces, Landscapes of Time-Frequency Analysis, Applied and Numerical Harmonic Analysis, 309-321 (2019), Basel: Birkhäuser, Basel · Zbl 1429.44002
[38] Toft, J., Tensor products for Gelfand-Shilov and Pilipović distribution spaces, J. Anal., 28, 591-613 (2020) · Zbl 1450.46027 · doi:10.1007/s41478-019-00205-0
[39] Toft, J.; Boggiatto, P.; Cappiello, M.; Cordero, E.; Coriasco, S.; Garello, G.; Oliaro, A.; Seiler, J., Wiener estimates for modulation spaces, Advances in Microlocal and Time-Frequency Analysis, Applied and Numerical Harmonic Analysis, 475-505 (2020), Basel: Birkhäuser, Basel
[40] Toft, J.; Nabizadeh, E., Periodic distributions and periodic elements in modulation spaces, Adv. Math., 323, 193-225 (2018) · Zbl 1385.42007 · doi:10.1016/j.aim.2017.10.040
[41] Zak, J., Finite translations in solid state physics, Phys. Rev. Lett., 19, 1385-1397 (1967) · doi:10.1103/PhysRevLett.19.1385
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.