×

Rates of convergence for the approximation of dual shift-invariant systems in \(\ell^2 (\mathbb{Z})\). (English) Zbl 0981.42020

Summary: A shift-invariant system is a collection of functions \(\{g_{m,n}\}\) of the form \(g_{m,n}(k)= g_m(k- an)\). Such systems play an important role in time-frequency analysis and digital signal processing. A principal problem is to find a dual system \(\gamma_{m,n}(k)= \gamma_m(k- an)\) such that each function \(f\) can be written as \(f= \Sigma\langle f, \gamma_{m,n}\rangle g_{m,n}\). The mathematical theory usually addresses this problem in infinite dimensions (typically in \(L^2(\mathbb{R})\) or \(\ell^2(\mathbb{Z})\)), whereas numerical methods have to operate with a finite-dimensional model. Exploiting the link between the frame operator and Laurent operators with matrix-valued symbol, we apply the finite section method to show that the dual functions obtained by solving a finite-dimensional problem converge to the dual functions of the original infinite-dimensional problem in \(\ell^2(\mathbb{Z})\). For compactly supported \(g_{m,n}\) (FIR filter banks) we prove an exponential rate of convergence and derive explicit expressions for the involved constants. Further, we investigate under which conditions one can replace the discrete model of the finite section method by the periodic discrete model, which is used in many numerical procedures. Again we provide explicit estimates for the speed of convergence. Some remarks on tight frames complete the paper.

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
65T60 Numerical methods for wavelets
41A25 Rate of convergence, degree of approximation
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
94A12 Signal theory (characterization, reconstruction, filtering, etc.)

References:

[1] Benedetto, J.J. and Li, S. (1993). MRA frames with applications, InICASSP’93, 304-307, Mineapolis, April 1993.
[2] Benedetto, J.J. and Treiber, O. Wavelet frames: Multiresolution analysis and extension principles, In Debnath, L., Ed.,Wavelet Transforms and Time-Frequency Signal Analysis, to appear. · Zbl 1036.42032
[3] Benedetto, J.J. and Walnut, D. (1994). Gabor frames for L2 and related spaces, In Benedetto, J.J. and Frazier, M., Eds.,Wavelets-Mathematics and Applications, 97-162, CRC Press, Boca Raton, FL. · Zbl 0887.42025
[4] Bölcskei, H. A necessary and sufficient condition for dual Weyl-Heisenberg frames to be compactly supported,J. Four. Anal. Appl., to appear. · Zbl 0933.42029
[5] Bölcskei, H. and Hlawatsch, F. (1998). Oversampled modulated filter banks. In Feichtinger, H.G. and Strohmer, T., Eds.,Gabor Analysis and Algorithms: Theory and Applications, Birkhäuser, Boston, 295-322. · Zbl 0890.42014
[6] Böttcher, A. and Silbermann, B. (1990).Analysis of Toeplitz Operators. Springer-Verlag, Berlin. · Zbl 0732.47029
[7] Casazza, P.G. and Christensen, O. Approximation of the inverse frame operator and applications to Weyl-Heisenberg frames,J. Approx. Theory, accepted for publication. · Zbl 0951.46008
[8] Daubechies, I. (1990). The wavelet transform, time-frequency localization and signal analysis,IEEE Trans. Info. Theory,36, 961-1005. · Zbl 0738.94004 · doi:10.1109/18.57199
[9] Daubechies, I. (1992).Ten Lectures on Wavelets. CBMS-NSF Reg. Conf. Series in Applied Math. SIAM. · Zbl 0776.42018
[10] Daubechies, I., Landau, H., and Landau, Z. (1995). Gabor time-frequency lattices and the Wexler-Raz identity,J. Four. Anal. Appl.,1(4), 437-478. · Zbl 0888.47018 · doi:10.1007/s00041-001-4018-3
[11] Demko, S., Moss, W.F., and Smith, P.W. (1984). Decay rates for inverses of band matrices,Math. Camp.,43(168), 491-499. · Zbl 0568.15003 · doi:10.1090/S0025-5718-1984-0758197-9
[12] Duffin, R.J. and Schaffer, A.C. (1952). A class of nonharmonic Fourier series,Trans. Am. Math. Soc., 341-366. · Zbl 0049.32401
[13] Feichtinger, H.G. and Kozek, W. (1998). Quantization of TF-lattice invariant operators on elementary LCA groups. In Feichtinger, H.G. and Strohmer, T., Eds.,Gabor Analysis and Algorithms: Theory and Applications, Birkhäuser, Boston, 233-266. · Zbl 0890.42012
[14] Feichtinger, H.G. and Strohmer, T., Eds., (1998).Gabor Analysis and Algorithms: Theory and Applications, Birkhäuser, Boston. · Zbl 0890.42004
[15] Friedlander, B. and Zeira, A. (1995). Oversampled Gabor representations for transient signals.IEEE Trans. Signal Proc,43(9), 2088-2095. · doi:10.1109/78.414770
[16] Gabor, D. (1946). Theory of communication,J. IEE (London),93(III), 429-457, November.
[17] Gohberg, I., Goldberg, S., and Kaashoek, M.A. (1993).Classes of linear operators. Vol. II, volume 63 ofOperator Theory: Advances and Applications. Birkhäuser Verlag, Basel. · Zbl 0789.47001
[18] Gohberg, I. and Kaashoek, M.A. (1994). Projection method for block Toeplitz operators with operator-valued symbols. InToeplitz operators and related topics (Santa Cruz, CA, 1992), volume 71 ofOper. Theory Adv. Appl., Birkhäuser, Basel, 79-104. · Zbl 0818.47022
[19] Gohberg, I.C. and Fel’dman, I.A. (1974).Convolution equations and projection methods for their solution. American Mathematical Society, Providence, RI, Translated from the Russian by F.M. Goldware, Translations of Mathematical Monographs, Vol. 41.
[20] Gröchenig, K. (1998). Aspects of Gabor analysis on locally compact abelian groups. In Feichtinger, H.G. and Strohmer, T., Eds.,Gabor Analysis and Algorithms: Theory and Applications, Birkhäuser, Boston, 211-231. · Zbl 0890.42011
[21] Hagen, R., Roch, S., and Silbermann, B. (1995).Spectral theory of approximation methods for convolution equations, volume 74 ofOperator Theory: Advances and Applications. Birkhäuser, Springer-Verlag, Basel.
[22] Havin, V. and Jöricke, B. (1994). The uncertainty principle in harmonic analysis,Ergebnisse der Mathematik und ihrer Grenzgebiete, 3(28), Springer-Verlag, Berlin. · Zbl 0827.42001
[23] Jaffard, S. (1990). Propriétés des matrices ?bien localisées? près de leur diagonale et quelques applications.Ann. Inst. H. Poincaré Anal. Non Linéaire,7(5), 461-476. · Zbl 0722.15004
[24] Jaffard, S. and Meyer, Y. (1989). Bases d’ondelettes dans des ouverts de ?n,J. Math. Pures Appl. (9),68(1), 95-108. · Zbl 0704.46009
[25] Janssen, A.J.E.M. (1997). sampling,J. Four. Anal. Appl.,3(5), 583-596. · Zbl 0884.42022 · doi:10.1007/BF02648886
[26] Janssen, A.J.E.M. (1995). Duality and biorthogonality for Weyl-Heisenberg frames,J. Four. Anal. Appl.,1(4), 403-436. · Zbl 0887.42028 · doi:10.1007/s00041-001-4017-4
[27] Janssen, A.J.E.M. (1996). Some Weyl-Heisenberg frame bound calculations,Indag. Mathem.,7(2), 165-182. · Zbl 1056.42512 · doi:10.1016/0019-3577(96)85088-9
[28] Janssen, A.J.E.M. (1998). The duality condition for Weyl-Heisenberg frames. In Feichtinger, H.G. and Strohmer, T., Eds.,Gabor Analysis and Algorithms: Theory and Applications, Birkhäuser, Boston, 33-84. · Zbl 0890.42006
[29] Lai, M.L. (1994). On the computation of Battle-Lemarié’s wavelets,Math. Comp.,63(208), 689-699. · Zbl 0807.42026
[30] Ron, A. and Shen, Z. (1995). Frames and stable bases for shift-invariant subspaces L2(?d),Can. J. Math.,47(5), 1051-1094. · Zbl 0838.42016 · doi:10.4153/CJM-1995-056-1
[31] Ron, A. and Shen, Z. (1997). Affine systems in L2(Rd): the analysis of the analysis operator,J. Funct. Anal.,148(2), 408-447. · Zbl 0891.42018 · doi:10.1006/jfan.1996.3079
[32] Strohmer, T. (1998). Numerical algorithms for discrete Gabor expansions. In Feichtinger, H.G. and Strohmer, T., Eds.,Gabor Analysis and Algorithms: Theory and Applications, Birkhäuser, Boston, 267-294. · Zbl 0890.42013
[33] Tolimieri, R. and An, M. (1998).Time-frequency representations, Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. · Zbl 0906.42002
[34] Vetterli, M. and Kovacevic, J. (1995).Wavelets and Subband Coding. Signal Processing Series. Prentice Hall, Engle-wood Cliffs, NJ.
[35] Wexler, J. and Raz, S. (1990). Discrete Gabor expansions.Signal Processing,21(3), 207-221, November. · doi:10.1016/0165-1684(90)90087-F
[36] Young, R. (1980).An Introduction to Nonharmonic Fourier Series. Academic Press, New York. · Zbl 0493.42001
[37] Zizler, P., Taylor, K.F., and Arimoto, S. (1997). The Courant-Fischer theorem and the spectrum of selfadjoint block band Toeplitz operators.Integral Equations Operator Theory,28(2), 245-250. · Zbl 0903.47020 · doi:10.1007/BF01191821
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.