×

Random intervals as a model for imprecise information. (English) Zbl 1079.60012

For an initial probability space \((\Omega, A, P)\) and a random variable \(U: \Omega \rightarrow R\) modelling the behaviour of some elements \(\omega \in\Omega\), the imprecision or the missing data in the observation of the \(U(\omega)\) values entail that, for any \(\omega \in \Omega\), \(U(\omega)\) belongs to the random (interval) set \(\Gamma(\omega) = [A(\omega), B(\omega)\)]. \(U\) belongs to the class of random variables whose values are included in the random interval \(\Gamma\), this class being denoted by \(P(\Gamma)\), and interpreted as the class of probability distributions of the measurable selections of the random (interval) set \(\Gamma\). In the same time, the probability induced by \(U\) is bounded between the upper and lower probabilities of the random interval \(\Gamma\), and the class of all these probabilities is denoted by \(M(P^*)\).
The aim of this paper is to investigate the relationship between \(P(\Gamma)\) and \(M(P^*)\), as two models for uncertainty and imprecision of the information about the probability distribution of the random variable \(U\), when \(\Gamma\) is a random interval. While \(P(\Gamma)\) is the most precise of the two models, since \(P(\Gamma) \subseteq M(P^*)\), the class \(M(P^*)\) is more interesting from an operational point of view, being convex, closed for some situations, and uniquely determined by the values of \(P^*\). The following main results are proved within the paper: (a) Given a random (closed or open) interval \(\Gamma\) defined on a non-atomic probability space, the closures of the classes \(P(\Gamma)\) and \(M(P^*)\), under the topology of weak convergence, coincide. (b) \(P(\Gamma)\) is a proper subset of \(M(P^*)\) when either of the distribution functions of the extremes of the random interval is continuous. Examples showing that \(P(\Gamma)\) and \(M(P^*)\) are not equivalent in general are provided. (c) The relationship between random intervals and fuzzy numbers is examined and discussed.

MSC:

60B10 Convergence of probability measures
60F05 Central limit and other weak theorems
60A10 Probabilistic measure theory
28E10 Fuzzy measure theory
94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory)
65G40 General methods in interval analysis
Full Text: DOI

References:

[1] Arstein, Z., Distribution of random sets and random selections, Israel J. Math., 46, 313-324 (1983) · Zbl 0545.60018
[2] Billingsley, P., Convergence of Probability Measures (1968), Wiley: Wiley New York · Zbl 0172.21201
[3] Billingsley, P., Probability and Measure (1986), Wiley: Wiley New York · Zbl 0649.60001
[4] Castaldo, A.; Marinacci, M., Random correspondences as bundles of random variables, (Proc. 2nd ISIPTA Conf.. Proc. 2nd ISIPTA Conf., Ithaca, New York (2001)), 77-82
[5] I. Couso, Teoría de la probabilidad para datos imprecisos, Algunos aspectos, Ph.D. Thesis, University of Oviedo, 1999 (in Spanish).; I. Couso, Teoría de la probabilidad para datos imprecisos, Algunos aspectos, Ph.D. Thesis, University of Oviedo, 1999 (in Spanish).
[6] Couso, I.; Montes, S.; Gil, P., Second order possibility measure induced by a fuzzy random variable, (Bertoluzza, C.; Gil, M. A.; Ralescu, D. A., Statistical Modeling, Analysis and Management of Fuzzy Data (2002), Springer: Springer Heidelberg), 127-144
[7] C. Dellacherie, Quelques commentaires sur les prolongements de capacités, in: Séminaire de Probabilités 1969/1970, Strasbourg, Lecture Notes in Mathematics, vol. 191, Springer, Berlin, 1971, pp. 77-81.; C. Dellacherie, Quelques commentaires sur les prolongements de capacités, in: Séminaire de Probabilités 1969/1970, Strasbourg, Lecture Notes in Mathematics, vol. 191, Springer, Berlin, 1971, pp. 77-81.
[8] Dempster, A. P., Upper and lower probabilities induced by a multivalued mapping, Ann. Math. Statist., 38, 325-339 (1967) · Zbl 0168.17501
[9] Dempster, A. P., Upper and lower probabilities generated by a random closed interval, Ann. Math. Statist., 39, 957-966 (1968) · Zbl 0251.62010
[10] Denneberg, D., Non-additive Measure and Integral (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0826.28002
[11] Dubois, D.; Prade, H., The mean value of a fuzzy number, Fuzzy Sets and Systems, 24, 3, 279-300 (1987) · Zbl 0634.94026
[12] Dubois, D.; Prade, H., Fuzzy numbersan overview, (Bezdek, J. C., Analysis of Fuzzy Information, vol. 1 (1987), CRC Press: CRC Press Boca Raton), 3-39 · Zbl 0663.94028
[13] Gil, M. A., A note on the connection between fuzzy numbers and random intervals, Statist. Probab. Lett., 13, 4, 311-319 (1992) · Zbl 0742.60003
[14] Goodman, I. R., Fuzzy sets as equivalence classes of random sets, (Yager, R. R., Fuzzy Set and Possibility Theory: Recent Developments (1982), Pergamon: Pergamon Oxford), 327-343
[15] Goodman, I. R., Some new results concerning random sets and fuzzy sets, Inform. Sci., 34, 2, 93-113 (1984) · Zbl 0552.60007
[16] Goodman, I. R.; Nguyen, H. T., Uncertainty Models for Knowledge-based Systems (1985), North-Holland: North-Holland Amsterdam · Zbl 0576.94001
[17] Grabisch, M.; Nguyen, H. T.; Walker, E. A., Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference (1995), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht
[18] Hart, S.; Köhlberg, E., Equally distributed correspondences, J. Math. Econom., 1, 2, 167-674 (1974) · Zbl 0288.28013
[19] Hess, C., The distribution of unbounded random sets and the multivalued strong law of large numbers in nonreflexive banach spaces, J. Convex Anal., 6, 1, 163-182 (1999) · Zbl 0945.60024
[20] Hildenbrand, W., Core and Equilibria of a Large Economy (1974), Princeton University Press: Princeton University Press Princeton · Zbl 0351.90012
[21] Himmelberg, C. J., Measurable relations, Fund. Math., 87, 53-72 (1975) · Zbl 0296.28003
[22] Himmelberg, C. J.; Parthasarathy, T.; Van Vleck, F. S., On measurable relations, Fund. Math., 111, 2, 161-167 (1981) · Zbl 0465.28002
[23] Huber, P. J.; Strassen, V., Minimax tests and the Neyman-Pearson lemma for capacities, Ann. Statist., 1, 2, 251-263 (1973) · Zbl 0259.62008
[24] Joslyn, C., Distributional representations of random interval measurements, (Ayyub, B.; Gupta, M., Uncertainty Analysis in Engineering and the Sciences (1997), Kluwer Academic Publishers: Kluwer Academic Publishers Boston), 37-52 · Zbl 0901.60007
[25] Kechris, A. S., Classical Descriptive Set Theory (1995), Springer: Springer New York · Zbl 0819.04002
[26] Kruse, R.; Meyer, K. D., Statistics with vague data (1987), D. Reidel Publishing Company: D. Reidel Publishing Company Dordrecht · Zbl 0663.62010
[27] Mathéron, G., Random Sets and Integral Geometry (1975), Wiley: Wiley New York · Zbl 0321.60009
[28] Miranda, E., Estudio de la información probabilística de los intervalos aleatorios, (Proceedings of the 27th SEIO Conference. Proceedings of the 27th SEIO Conference, Lérida (Spain) (2003)), 1828-1848, (in Spanish)
[29] Miranda, E.; Couso, I.; Gil, P., Upper probabilities and selectors of random sets, (Grzegorzewski, P.; Hryniewicz, O.; Gil, M. A., Soft Methods in Probability, Statistics and Data Analysis (2002), Physica-Verlag: Physica-Verlag Heidelberg), 126-133
[30] Miranda, E.; Couso, I.; Gil, P., Extreme points of credal sets generated by 2-alternating capacities, Internat. J. Approx. Reason., 33, 1, 95-115 (2003) · Zbl 1029.68135
[31] E. Miranda, I. Couso, P. Gil, Upper probabilities attainable by distributions of measurable selections, Technical Report 04/05, Rey Juan Carlos University, 2004.; E. Miranda, I. Couso, P. Gil, Upper probabilities attainable by distributions of measurable selections, Technical Report 04/05, Rey Juan Carlos University, 2004. · Zbl 1245.68218
[32] Miranda, E.; Couso, I.; Gil, P., A random set characterisation of possibility measures, Inform. Sci., 168, 1-4, 51-75 (2004) · Zbl 1074.28010
[33] Nguyen, H. T., On random sets and belief functions, J. Math. Anal. Appl., 65, 3, 531-542 (1978) · Zbl 0409.60016
[34] Norberg, T., Random capacities and their distributions, Israel J. Math., 77, 3, 241-264 (1992) · Zbl 0768.60015
[35] Puri, M. L.; Ralescu, D. A., Fuzzy random variables, J. Math. Anal. Appl., 114, 409-422 (1986) · Zbl 0592.60004
[36] Strassen, V., Meßfehler und Information, Z. Wahrscheinlichkeitstheorie und Verwandte Gebiete, 2, 273-305 (1964) · Zbl 0131.36402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.