×

A cascade optimization methodology for automatic parameter identification and shape/process optimization in metal forming simulation. (English) Zbl 1155.74390

Summary: Computer simulations of metal forming processes using the finite element method (FEM) are, today, well established. This form of simulation uses an increasing number of sophisticated geometrical and material models, relying on a certain number of input data, which are not always readily available. The aim of inverse problems, which will be considered here, is to determine one or more of the input data relating to these forming process simulations, thereby leading to a desired result. In this paper, we will focus on two categories of such inverse problems.
The first category consists of parameter identification inverse problems. These involve evaluating the material parameters for material constitutive models that would lead to the most accurate results with respect to physical experiments, i.e. minimizing the difference between experimental results and FEM simulations.
The second category consists of shape/process optimization inverse problems. These involve determining the initial geometry of the specimen and/or the shape of the forming tools, as well as some parameters of the process itself, in order to provide the desired final geometry after the forming process. These two categories of inverse problems can be formulated as optimization problems in a similar way, i.e. by using identical optimization algorithms. In this paper, we intend firstly to solve these two types of optimization problems by using different non-linear gradient based optimization methods and secondly to compare their efficiency and robustness in a variety of numerical applications.

MSC:

74P10 Optimization of other properties in solid mechanics
74G75 Inverse problems in equilibrium solid mechanics
Full Text: DOI

References:

[1] Ahmetoglu, M.; Altan, T., Tube hydroforming: state-of-the-art and future trends, J. Mater. Process. Technol., 98, 25-33 (2000)
[2] Amar, G.; Dufailly, J., Identification and validation of viscoplastic and damage constitutive equations, Eur. J. Mech. A/Solids, 12, 2, 197-218 (1993)
[3] Antonio, C. A.C.; Dourado, M. N., Metal-forming process optimisation by inverse evolutionary search, J. Mater. Process. Technol., 121, 403-413 (2002)
[4] Antonio, C. C.; Castro, C. F.; Sousa, L. C., Optimization of metal forming processes, Comput. Struct., 82, 1425-1433 (2004)
[5] Antunez, H. J.; Kleiber, M., Sensitivity of forming processes to shape parameters, Comput. Methods Appl. Mech. Engrg., 137, 189-206 (1996) · Zbl 0886.73041
[6] Argyris, J.; Doltsinis, I. St., A primer on superplasticity in natural formulation, Comput. Methods Appl. Mech. Engrg., 46, 83-131 (1984) · Zbl 0581.73049
[7] O. Barlet, H. Naceur, J.L. Batoz, C. Knopf-Lenoir, Shape optimum design of blank contours using a simplified inverse approach, in: F.P.T. Baaijens J. Huétink (Eds.), Simulation of Materials Processing: Theory, Methods and Applications, Balkema, Rotterdam, June 1998, pp. 787-792.; O. Barlet, H. Naceur, J.L. Batoz, C. Knopf-Lenoir, Shape optimum design of blank contours using a simplified inverse approach, in: F.P.T. Baaijens J. Huétink (Eds.), Simulation of Materials Processing: Theory, Methods and Applications, Balkema, Rotterdam, June 1998, pp. 787-792.
[8] Batoz, J.-L.; Guo, Y. Q.; Mercier, F., The inverse approach with simple triangular shell elements for large strain predictions of sheet metal forming parts, Engrg. Comput., 15, 7, 864-892 (1998) · Zbl 0954.74057
[9] Batoz, J. L.; Guo, Y. Q., Analysis and design of sheet forming parts using a simplified inverse approach, (Owen, D. R.J.; Oñate, E.; Hinton, E., Comput. Plasticity, Fundmen. and Appl. (1997), CIMNE: CIMNE Barcelona), 178-195
[10] Beckers, M.; Kopp, R., A new approach to optimization of metal forming processes, (Thomson, E., NUMIFORM’89 (1989), Balkema: Balkema Rotterdam), 107-113
[11] Bertsekas, D., Nonlinear Programming (1995), Athena Scientific: Athena Scientific Belmont, Massachusetts · Zbl 0935.90037
[12] Bertsekas, D., Constrained Optimization and Lagrange Multiplier Methods (1996), Athena Scientific: Athena Scientific Belmont, Massachusetts
[13] Bolzon, G.; Fedele, R.; Maier, G., Parameter identification of a cohesive crack model by Kalman filter, Comput. Methods Appl. Mech. Engrg., 191, 2847-2871 (2002) · Zbl 1131.74308
[14] Boman, R.; Ponthot, J. P., Finite element simulation of lubricated contact in rolling using the Arbitrary Lagrangian-Eulerian formulation, Comput. methods Appl. Mech. Engrg., 193, 4323-4553 (2004) · Zbl 1198.74094
[15] Bonnans, J. F.; Gilbert, J. C.; Lemarechal, C.; Sagastizabal, C. A., Numerical Optimization—Theoretical and Practical Aspects (2003), Springer · Zbl 1014.65045
[16] Brezocnik, M.; Balic, J.; Brezocnik, Z., Emergence of intelligence in next-generation manufacturing systems, Robot. Comput. Integr. Manufact., 19, 55-63 (2003)
[17] Brezocnik, M.; Balic, J.; Kampus, Z., Modeling of forming efficiency using genetic programming, J. Mater. Process. Technol., 109, 20-29 (2001)
[18] G. Cailletaud, P. Pilvin, Identification, problémes inverse: un concept modulaire, in: 2ième Colloque National en Calcul des Structures, Giens, 1993, pp. 770-787.; G. Cailletaud, P. Pilvin, Identification, problémes inverse: un concept modulaire, in: 2ième Colloque National en Calcul des Structures, Giens, 1993, pp. 770-787.
[19] Cailletaud, G.; Pilvin, P., Identification and inverse problems related to material behaviour, (Bui, H. D.; Tanaka, M., Inverse Problems in Engineering Mechanics (1994), Balkema: Balkema Rotterdam), 79-86
[20] Cantu-Paz, E., Efficient and Accurate Parallel Genetic Algorithms (2000), Kluwer Academic Publisher · Zbl 0963.68164
[21] Castro, C. F.; Antonio, C. A.C.; Sousa, L. C., Optimization of shape and process parameters in metal forging using genetic algorithm, J. Mater. Process. Technol., 146, 356-364 (2004)
[22] Chaboche, J. L.; Nouailhas, D.; Savalle, S., Agice: Logiciel pour l’identification interactive graphique des lois de comportement, La Recherche Aérospatiale, 3, 59-76 (1991)
[23] Chakraborti, N., Genetic algorithms in material design and processing, Int. Mater. Rev., 49, 3-4, 246-260 (2004)
[24] Charmpis, N. D.; Lagaros, D. C.; Papadrakakis, M., Multi-database exploration of large design spaces in the framework of cascade evolutionary structural sizing algorithms, Comput. Methods Appl. Mech. Engrg., 194, 3315-3330 (2005) · Zbl 1108.74047
[25] Chen, B.; Tong, L., Thermomechanically coupled sensitivity analysis and design optimization of functionally graded materials, Comput. Methods Appl. Mech. Engrg., 194, 1891-1911 (2005) · Zbl 1092.74033
[26] Chenot, J. L.; Massoni, E.; Fourment, L., Inverse problems in finite element simulation of metal forming processes, Engrg. Comput., 13, 2/3/4, 190-225 (1996) · Zbl 0983.74545
[27] Chung, J. S.; Hwang, S. M., Application of a genetic algorithm to the optimal design of the die shape in extrusion, J. Mater. Process. Technol., 72, 69-77 (1997)
[28] Chung, J. S.; Hwang, S. M., Application of a genetic algorithm to process optimal design in nonisothermal metal forming, J. Mater. Process. Technol., 80-81, 136-143 (1998)
[29] Chung, S. H.; Fourment, L.; Chenot, J. L.; Hwang, S. M., Adjoint state method for shape sensitivity analysis in non-steady forming applications, Int. J. Numer. Methods Engrg., 57, 1431-1444 (2003) · Zbl 1062.74584
[30] Coello, C., A comprehensive survey of evolutionary-based multiobjective optimization techniques, Knowl. Inform. Syst., 1, 3, 269-308 (1999)
[31] de Castilho, V. C.; do Carmo Nicoletti, M.; El Debs, M. K., An investigation of the use of three selection-based genetic algorithm families when minimizing the production cost of hollow core slabs, Comput. Methods Appl. Mech. Engrg., 194, 4651-4667 (2005) · Zbl 1092.74053
[32] Delameziere, A.; Naceur, H.; Breitkopf, P.; Knopf-Lenoir, C.; Batoz, P.; Villon, J.-L., Feasibility in deep drawing: optimization of material properties using response surface, Mec. Ind., 3, 93-98 (2002)
[33] Dennis, J. E.; Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations (1983), Prentice-Hall: Prentice-Hall NJ · Zbl 0579.65058
[34] Di Lorenzo, R.; Fratini, N.; Filice, L.; Micari, S.; Bruschi, S., Comparison of analytical methods and AI tools for material characterisation in hot forming, J. Mater. Process. Technol., 125-126, 434-439 (2002)
[35] Doltsinis, I.; Rodic, T., Process design and sensitivity analysis in metal forming, Int. J. Numer. Methods Engrg., 45, 661-692 (1999) · Zbl 0935.74056
[36] Doltsinis, I. St., Large Deformation Processes of Solids—from Fundamentals to Numerical Simulation and Engineering Applications (2004), WIT Press · Zbl 0688.73041
[37] Donea, J.; Huerta, A.; Ponthot, J. P.; Rodriguez-Ferran, A., Arbitrary Lagrangian-Eulerian methods, (Wiley, E.; Stein, R.; de Borst, R.; Hughes, T. J.R., Encyclopedia of Computational Mechanics (Chapter 14), vol. 1 (2004), Wiley: Wiley Chichester), 413-438
[38] Fancello, E. A.; Feijoo, R. A., Shape optimization in frictionless contact problems, Int. J. Numer. Methods Engrg., 37, 2311-2335 (1994) · Zbl 0806.73045
[39] Feng, X. T.; Yang, C., Genetic evolution of nonlinear material constitutive models, Comput. Methods Appl. Mech. Engrg., 190, 5957-5973 (2001) · Zbl 1075.74614
[40] Fleury, C., A unified approach to structural weight minimization, Comput. Methods Appl. Mech. Engrg., 20, 1, 17-38 (1979) · Zbl 0408.73075
[41] Fleury, C., CONLIN: an efficient dual optimizer based on convex approximation concepts, Struct. Optim., 1, 81-89 (1989)
[42] Fleury, C., First and second order convex approximation strategies in structural optimization, Struct. Optim., 1, 3-10 (1989)
[43] Fontaine, J. F., The torsion-tensile testing method for the characterization of cold metal formability, J. Mater. Process. Technol., 32, 253-262 (1992)
[44] Fourment, L.; Balan, T.; Chenot, J. L., Optimisation de forme d’outils en forgeage, (Deuxieme colloque national en calcul des structures (1995), HERMES: HERMES Giens, France), 807-812
[45] Fourment, L.; Balan, T.; Chenot, J. L., Optimal design for non-steady-state metal forming processes—II. Application of shape optimization in forging, Int. J. Numer. Methods Engrg., 39, 51-65 (1996) · Zbl 0882.73047
[46] Fourment, L.; Balan, T.; Chenot, J. L., Optimum design of the hot forging process: a FE inverse model with remeshing for large deformation, (Owen, D. R.J.; Oñate, E.; Hinton, E., Computational Plasticity: Fundamentals and Applications (1997), CIMNE: CIMNE Barcelona), 804-809
[47] Fourment, L.; Chenot, J. L., The inverse problem of design in forging, (2nd International Symposium on Inverse Problems (1994), Balkema: Balkema Rotterdam), 21-28 · Zbl 0861.73049
[48] Fourment, L.; Chenot, J. L., Optimal design for non-steady-state metal forming processes—I. Shape optimization method, Int. J. Numer. Methods Engrg., 39, 33-50 (1996) · Zbl 0861.73049
[49] Fourment, L.; Chenot, J. L., Inverse methods applied to metal forming processes, (Topping, B. H.V., Computational Mechanics for the Twenty-First Century (2000), Saxe-Coburg Publications: Saxe-Coburg Publications Edinburgh), 127-143 · Zbl 0861.73049
[50] Furukawa, T., Parameter identification with weightless regularization, Int. J. Numer. Methods Engrg., 52, 219-238 (2001) · Zbl 0996.93025
[51] Furukawa, T.; Sugata, T.; Yoshimura, S.; Hoffman, M., An automated system for simulation and parameter identification of inelastic constitutive models, Comput. Methods Appl. Mech. Engrg., 191, 2235-2260 (2002) · Zbl 1131.74347
[52] Furukawa, T.; Yagawa, G., Inelastic constitutive parameter identification using an evolutionary algorithm with continuous individuals, Int. J. Numer. Methods Engrg., 40, 1071-1090 (1997) · Zbl 0888.73075
[53] Furukawa, T.; Yagawa, G., Implicit constitutive modelling for viscoplasticity using neural networks, Int. J. Numer. Methods Engrg., 43, 195-219 (1998) · Zbl 0926.74020
[54] Gavrus, A.; Massoni, E.; Chenot, J. L., Computer aided rheology for constitutive parameter identification, (Owen, D. R.J.; etal., 4th International Conference on Computational Plasticity (1995), Pineridge Press), 755-766
[55] Gavrus, A.; Massoni, E.; Chenot, J. L., Constitutive parameter identification using a computer aided rheology approach, (Shen, S. F.; etal., 5th International Conference on Numerical Methods in Industrial Forming Processes (1995), Balkema: Balkema Rotterdam), 563-568
[56] Gavrus, A.; Massoni, E.; Chenot, J. L., An inverse analysis using a finite element model for identification of rheological parameters, J. Mater. Process. Technol., 60, 1-4, 447-454 (1996)
[57] A. Gavrus, E. Massoni, J.L. Chenot, An inverse finite element analysis applied to viscoplastic parameter identification, in: John Wiley and Sons (Eds.), Second ECCOMAS Conference on Numerical Methods in Engineering, Paris, September 1996.; A. Gavrus, E. Massoni, J.L. Chenot, An inverse finite element analysis applied to viscoplastic parameter identification, in: John Wiley and Sons (Eds.), Second ECCOMAS Conference on Numerical Methods in Engineering, Paris, September 1996. · Zbl 0907.73003
[58] Gelin, J.-C.; Ghouati, O., An inverse method for determining viscoplastic properties of aluminium alloys, J. Mater. Process. Technol., 45, 1-4, 435-440 (1994)
[59] Gelin, J.-C.; Ghouati, O., An inverse solution procedure for material parameters identification in large plastic deformation, Commun. Numer. Methods Engrg., 12, 3, 161-173 (1996) · Zbl 0853.73028
[60] J.C. Gelin, Apports de la modélisation numérique pour l’identification du comportement des matériaux en vue de leur mise en forme, in: O. Debordes, A. Dogui, F. Sidoroff (Eds.), Intéractions expérience-calcul pour l’identification du comportement mécanique des matériaux, page supplement, November 1998.; J.C. Gelin, Apports de la modélisation numérique pour l’identification du comportement des matériaux en vue de leur mise en forme, in: O. Debordes, A. Dogui, F. Sidoroff (Eds.), Intéractions expérience-calcul pour l’identification du comportement mécanique des matériaux, page supplement, November 1998.
[61] Gelin, J. C.; Ghouati, O., Une méthode d’identification inverse des paramètres matériels pour les comportements non-linéaires, Rev. Européenne des éléments Finis, 4, 4, 463-485 (1995) · Zbl 0924.73072
[62] O. Ghouati, Identification et Modélisation Numérique Directe et Inverse du comportement Viscoplastique des Alliages d’Aluminium, Ph.D. thesis, U.F.R. des Sciences et Techniques de l’Université de Franche-Comté, July 1994.; O. Ghouati, Identification et Modélisation Numérique Directe et Inverse du comportement Viscoplastique des Alliages d’Aluminium, Ph.D. thesis, U.F.R. des Sciences et Techniques de l’Université de Franche-Comté, July 1994.
[63] Ghouati, O.; Gelin, J.-C., Identification of material parameters directly from metal forming processes, J. Mater. Process. Technol., 80-81, 560-564 (1998)
[64] Ghouati, O.; Gelin, J. C.; Baida, M.; Lenoir, H., Simulation and control of hydroforming processes for tubes or flanges forming, (Govas, J. A., 2nd ESAFORM Conference on Material Forming (1999), Guimarães: Guimarães Portugal), 473-476
[65] O. Ghouati, D. Joannic, J.C. Gelin, Etude et optimisation des paramètres de procédé pour le contrôle du retour elastique de pièces embouties, in: Peseux et al., (Eds.), 3ième Col. Nat. Calcul des Structures, Presses Académ. Ouest, 1997, pp. 729-734.; O. Ghouati, D. Joannic, J.C. Gelin, Etude et optimisation des paramètres de procédé pour le contrôle du retour elastique de pièces embouties, in: Peseux et al., (Eds.), 3ième Col. Nat. Calcul des Structures, Presses Académ. Ouest, 1997, pp. 729-734.
[66] O. Ghouati, D. Joannic, J.C. Gelin, Optimisation of process parameters for the control of springback in deep drawing, in: F.P.T. Baaijens, J. Huétink (Eds.), Simulation of Materials Processing: Theory, Methods and Applications, june 1998, pp. 787-792.; O. Ghouati, D. Joannic, J.C. Gelin, Optimisation of process parameters for the control of springback in deep drawing, in: F.P.T. Baaijens, J. Huétink (Eds.), Simulation of Materials Processing: Theory, Methods and Applications, june 1998, pp. 787-792. · Zbl 0907.73042
[67] O. Ghouati, H. Lenoir, J.C. Gelin, Optimisation de procédés en emboutissage des tôles, in: Peseux et al. (Eds.), 4ième Col. Nat. Calcul des Structures, CSMA Teknea, 1999, pp. 407-412.; O. Ghouati, H. Lenoir, J.C. Gelin, Optimisation de procédés en emboutissage des tôles, in: Peseux et al. (Eds.), 4ième Col. Nat. Calcul des Structures, CSMA Teknea, 1999, pp. 407-412.
[68] Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning (1989), Addison-Wesley Publishing Company Inc. · Zbl 0721.68056
[69] Grediac, M.; Vautrin, A., A new method for determination of bending rigidities of thin anisotropic plates, J. Appl. Mech., 57, 964-968 (1990)
[70] I. Gresovnik, Inverse. Software for solving optimization and inverse problems. Available from: <http://www.c3m.si/inverse/; I. Gresovnik, Inverse. Software for solving optimization and inverse problems. Available from: <http://www.c3m.si/inverse/
[71] Gresovnik, I.; Rodic, T., A general-purpose shell for solving inverse and optimization problems in metal forming, (2d ESAFORM Conference on Material Forming (1998), Guimares: Guimares Portugal), 497-500 · Zbl 0942.74080
[72] Guo, Y. Q.; Batoz, J.-L.; Naceur, H.; Bouabdallah, S.; Mercier, F.; Barlet, O., Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach, Comput. Struct., 78, 133-148 (2000)
[73] Holzapfel, G. A., Nonlinear Solid Mechanics. A Continuum Approach for Engineering (2000), J. Wiley & sons · Zbl 0980.74001
[74] Huber, N.; Tsakmakis, Ch., A neural network tool for identifying the material parameters of a finite deformation viscoplasticity model with static recovery, Comput. Methods Appl. Mech. Engrg., 191, 353-384 (2001) · Zbl 0991.74019
[75] Kleiber, M., Shape and non-shape structural sensitivity analysis for problems with any material and kinematic non-linearity, Comput. Methods Appl. Mech. Engrg., 108, 1-2, 73-97 (1993) · Zbl 0783.73040
[76] Kleiber, M.; Kowalczyk, P., Sensitivity analysis in plane stress elasto-plasticity and elasto-viscoplasticity, Comput. Methods Appl. Mech. Engrg., 137, 395-409 (1996) · Zbl 0881.73099
[77] J.P. Kleinermann, Identification paramétrique et optimisation des procédés de mise a forme par problemes inverses, Ph.D. thesis, Université de Liège, September 2000, (In French).; J.P. Kleinermann, Identification paramétrique et optimisation des procédés de mise a forme par problemes inverses, Ph.D. thesis, Université de Liège, September 2000, (In French).
[78] Kleinermann, J. P.; Ponthot, J. P., Parameter identification and shape/process optimization in metal forming simulation, J. Mater. Process. Technol., 139, 521-526 (2003) · Zbl 1162.74363
[79] Kopp, R.; Philipp, F. D., Physical parameter and boundary conditions for the simulation of hot forming processes, Steel Res., 9, 392-398 (1992)
[80] Kowalczyk, P.; Kleiber, M., Shape sensitivity elasto-plastic computations, Comput. Methods Appl. Mech. Engrg., 171, 371-386 (1999) · Zbl 0956.74058
[81] Lagaros, N. D.; Papadrakakis, M.; Kokossalakis, G., Structural optimization using evolutionary algorithms, Comput. Struct., 80, 571-589 (2002)
[82] Lagaros, N. D.; Plevris, V.; Papadrakakis, M., Multi-objective design optimization using cascade evolutionary computations, Comput. Methods Appl. Mech. Engrg., 194, 3496-3515 (2005) · Zbl 1092.74034
[83] Laumanns, M.; Thiele, L.; Deb, K.; Zitzler, E., Combining convergence and diversity in evolutionary multi-objective optimization, Evolution. Comput., 10, 3, 262-282 (2002)
[84] Li, B.; Lin, J.; Yao, X., A novel evolutionary algorithm for determining unified creep damage constitutive equations, Int. J. Mech. Sci., 44, 987-1002 (2002) · Zbl 1115.74364
[85] Liu, G. R.; Lee, J. H.; Patera, A. T.; Yang, Z. L.; Lam, K. Y., Inverse identification of thermal parameters using reduced-basis method, Comput. Methods Appl. Mech. Engrg., 194, 3090-3107 (2005) · Zbl 1137.74361
[86] Lucke, H. U.; Hartl, Ch.; Abbey, T., Hydroforming, J. Mater. Process. Technol., 115, 87-91 (2001)
[87] Mahnken, R., A comprehensive study of a multiplicative elastoplasticity model coupled to damage including parameter identification, Comput. Struct., 74, 2, 179-200 (1999)
[88] Mahnken, R.; Stein, E., Gradient-based methods for parameter identification of viscoplastic material, (2nd International Symposium on Inverse Problems (1994), Balkema: Balkema Rotterdam), 137-144
[89] Mahnken, R.; Stein, E., The parameter identification for visco-plastic models via finite element method and gradient-methods, Model. Simul. Mater. Sci. Engrg., 2, 597-616 (1994)
[90] Mahnken, R.; Stein, E., A unified approach for parameter identification of inelastic material models in the frame of the finite element method, Comput. Methods Appl. Mech. Engrg., 136, 225-258 (1996) · Zbl 0921.73143
[91] Mahnken, R.; Stein, E., Concepts and computational methods for parameter identification of inelastic material models, (Onate, E.; Owen, D. R.J.; Hinton, E., Computational Plasticity, Fundamentals and Applications (1997), CIMNE: CIMNE Barcelona)
[92] Mahnken, R.; Stein, E., Parameter identification for finite deformation elasto-plasticity in principal directions, Comput. Methods Appl. Mech. Engrg., 147, 17-39 (1997) · Zbl 0896.73024
[93] Moal, A.; Massoni, E.; Chenot, J. L., A finite element model for the simulation of the torsion and torsion-tension tests, Comput. Methods Appl. Mech. Engrg., 103, 417-434 (1993) · Zbl 0825.73682
[94] Mori, K.; Yamamoto, M.; Osakada, K., Determination of hammering sequence in incremental sheet metal forming using a genetic algorithm, J. Mater. Process. Technol., 60, 463-468 (1996)
[95] Morris, A. J., Foundations of Structural Optimization. Numerical Methods in Engineering Series (1982), John Wiley and sons
[96] Mroz, Z.; Piekarski, J., Sensitivity analysis and optimal design of non-linear structures, Int. J. Numer. Methods Engrg., 42, 1231-1262 (1998) · Zbl 0904.73040
[97] Muller, D.; Hartmann, G., Identification of materials parameters for inelastic constitutive models using principles of biologic evolution, J. Engrg. Mater. Technol., 111, 299-305 (1989)
[98] Naceur, H.; Guo, Y. Q.; Batoz, J.-L., Blank optimization in sheet metal forming using an evolutionary algorithm, J. Mater. Process. Technol., 151, 183-191 (2004)
[99] Y. Nakamura, T. Ohata, T. Katayama, E. Nakamichi, Optimum die design for sheet metal forming process by finite element and discretized optimization methods, in: F.P.T. Baaijens, J. Huétink (Eds.), Simulation of Materials Processing: Theory, Methods and Applications, Taylor & Francis, June 1998, pp. 787-792.; Y. Nakamura, T. Ohata, T. Katayama, E. Nakamichi, Optimum die design for sheet metal forming process by finite element and discretized optimization methods, in: F.P.T. Baaijens, J. Huétink (Eds.), Simulation of Materials Processing: Theory, Methods and Applications, Taylor & Francis, June 1998, pp. 787-792.
[100] Nariman-Zadeh, N.; Darvizeh, A.; Jamali, A.; Moeini, A., Evolutionary design of generalized polunomial neural networks for modeling and prediction of explosive forming process, J. Mater. Process. Technol., 164-165, 1561-1571 (2005)
[101] Nielsen, K. B.; Jensen, M. R.; Danckert, J., Optimization of sheet metal forming processes using finite element simulations, Acta Metall. Sinica (English Letters), 13, 2, 531-539 (2000)
[102] Norris, D. M.; Morran, J. R.B.; Scudde, J. K.; Quinones, D. F., A computer simulation of the tension test, J. Mech. Phys. Solids, 26, 1-19 (1978)
[103] Padmanabhan, K. A.; Vasin, R. A.; Enikeev, F. U., Superplastic Flow: Phenomenology and Mechanics (2001), Springer
[104] Papadrakakis, M.; Lagaros, N. D., Reliability based structural optimization using neural networksand Monte Carlo simulationstructural optimization using evolution strategies and neural networks, Comput. Methods Appl. Mech. Engrg., 191, 32, 3491-3507 (2002) · Zbl 1101.74377
[105] Papadrakakis, M.; Lagaros, N. D., Advanced solution methods in structural optimization based on evolution strategies, Engrg. Comput., 15, 1, 12-34 (1998) · Zbl 0935.74057
[106] Papadrakakis, M.; Lagaros, N. D.; Tsompanakis, Y., Structural optimization using evolution strategies and neural networks, Comput. Methods Appl. Mech. Engrg., 156, 309-333 (1998) · Zbl 0964.74045
[107] Papadrakakis, M.; Tsompanakis, Y.; Lagaros, N. D., Structural shape optimization using evolution strategies, Engrg. Optim., 31, 515-540 (1999)
[108] Patnaik, S. N.; Coroneos, R. M.; Hopkins, D. A., A cascade optimization strategy for solution of difficult design problems, Int. J. Numer. Methods Engrg., 40, 2257-2266 (1997) · Zbl 0894.73094
[109] Patnaik, S. N.; Coroneos, R. M.; Guptill, J. D.; Hopkins, D. A., Comparative evaluation of different optimization algorithms for structural design applications, Int. J. Numer. Methods Engrg., 39, 1761-1774 (1996) · Zbl 0884.73041
[110] Patnaik, S. N.; Hopkins, D. A., General-purpose optimization method for multidisciplinary design applications, Adv. Engrg. Software, 31, 57-63 (2000)
[111] Patnaik, S. N.; Guptill, J. D.; Hopkins, D. A., Subproblem optimization with regression and neural netwok approximators, Comput. Method Appl. Mech. Engrg., 194, 3359-3373 (2005) · Zbl 1106.74049
[112] Picart, P.; Ghouati, O.; Gelin, J.-C., Optimization of metal forming process parameters with damage minimization, J. Mater. Process. Technol., 80-81, 597-601 (1998)
[113] Pinho-da Cruz, J.; Teixeira-Dias, F., On the optimisation of viscoplastic constitutive modelling using a numerical feedback damping algorithm, Comput. Methods Appl. Mech. Engrg., 194, 2191-2210 (2005) · Zbl 1137.74444
[114] J.P. Ponthot, Traitement Unifié de la Mécanique des Milieux Continus Solides en Grandes Déformations par la Méthode des Eléments finis. Ph.D. thesis, Université de Liège. Available from: <http://www.ulg.ac.be/ltas-mct; J.P. Ponthot, Traitement Unifié de la Mécanique des Milieux Continus Solides en Grandes Déformations par la Méthode des Eléments finis. Ph.D. thesis, Université de Liège. Available from: <http://www.ulg.ac.be/ltas-mct
[115] Ponthot, J. P., Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes, Int. J. Plasticity, 18, 1, 91-126 (2002) · Zbl 1035.74012
[116] Ponthot, J. P.; Kleinermann, J. P., Optimization methods for initial/tool shape optimisation in metal forming processes, Int. J. Vehicle Des., 39, 1/2, 14-24 (2005)
[117] Qu, J.; Jin, Q. L.; Xu, B. Y., Parameter identification for improved viscoplastic model considering dynamic recrystallization, Int. J. Plasticity, 21, 1267-1302 (2005) · Zbl 1229.74138
[118] Rodic, T.; Gresovnik, I., A computer system for solving inverse and optimization problems, Engrg. Comput., 15, 7, 893-907 (1998) · Zbl 0942.74080
[119] Rodic, T.; Gresovnik, I., Optimization of prestressing of cold forging tooling system, (2d International Conference on Inverse Problems in Engineering, vol. 2 (1998), Engineering Foundation: Engineering Foundation New York) · Zbl 0942.74080
[120] Rodic, T.; Gresovnik, I.; Owen, D. R.J., Application of error minimization concept to estimation of hardening in tension test, (4th International Conference on Computational Plasticity (1995), Pineridge Press: Pineridge Press Swansea), 779-786
[121] T. Rodic, J. Korelc, I. Gresovnik, Inverse analyses and optimization of cold forging processes, in: 1st ESAFORM Conference on Material Forming, Sophia-Antipolis, France, 1998, pp. 255-258.; T. Rodic, J. Korelc, I. Gresovnik, Inverse analyses and optimization of cold forging processes, in: 1st ESAFORM Conference on Material Forming, Sophia-Antipolis, France, 1998, pp. 255-258.
[122] Roy, S.; Ghosh, S.; Shivpuri, R., Optimal design of process variables in multi-pass wire drawing by genetic algorithm, J. Manufact. Sci. Engrg., Trans. ASME, 118, 244-251 (1996)
[123] Roy, S.; Ghosh, S.; Shivpuri, R., A new approach to optimal design of multi-stage metal forming processes with micro genetic algorithm, Int. J. Mach. Tools Manufact., 37, 1, 29-44 (1997)
[124] Schenk, O.; Hillman, M., Optimal design of metal forming die surfaces with evolution strategies, Comput. Struct., 82, 1695-1705 (2004)
[125] Schittkowski, K., NLPQL: a FORTRAN subroutine solving constrained nonlinear programming problems, Ann. Oper. Res., 485-500 (1985)
[126] Schnur, D.; Zabaras, N., An inverse method for determining elastic material properties and a material interface, Int. J. Numer. Methods Engrg., 33, 2039-2057 (1992) · Zbl 0767.73078
[127] M. Sebag, M. Sschoenauer, H. Maitournam, Identification de modèles rhéologiques par programmation génétique, in: la Presse Académique de l’Ouest, editor, Actes du troisième colloque national en Calcul des Structures, vol. 1, Giens, France, May 1997, pp. 177-182.; M. Sebag, M. Sschoenauer, H. Maitournam, Identification de modèles rhéologiques par programmation génétique, in: la Presse Académique de l’Ouest, editor, Actes du troisième colloque national en Calcul des Structures, vol. 1, Giens, France, May 1997, pp. 177-182.
[128] Siegert, K.; Haussermann, M.; Losch, B.; Rieger, R., Recent developments in hydroforming technology, J. Mater. Process. Technol., 98, 251-258 (2000)
[129] Simo, J. C., A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition, Comput. Method Appl. Mech. Engrg., 66, 199-219 (1988) · Zbl 0611.73057
[130] Smith, D. E.; Tortorelli, D. A.; Tucker, C. H., Analysis and sensitivity analysis for polymer injection and compression molding, Comput. Methods Appl. Mech. Engrg., 167, 325-344 (1998) · Zbl 0932.82039
[131] Smith, D. E.; Tortorelli, D. A.; Tucker, C. H., Optimal design for polymer extrusion, Part I: Sensitivity analysis for non-linear steady-state systems, Comput. Methods Appl. Mech. Engrg., 167, 283-302 (1998) · Zbl 0932.82038
[132] Smith, D. E.; Tortorelli, D. A.; Tucker, C. H., Optimal design for polymer extrusion, Part II: Sensitivity analysis for weakly-coupled nonlinear steady-state systems, Comput. Methods Appl. Mech. Engrg., 167, 303-323 (1998) · Zbl 0932.82038
[133] Srikhanth, A.; Zabaras, N., Shape optimization and preform design in metal forming processes, Comput. Methods Appl. Mech. Engrg., 190, 1859-1901 (2000) · Zbl 1002.74080
[134] Svanberg, K., The method of moving asymptotes. A new method for structural optimization, Int. J. Numer. Methods Engrg., 24, 359-373 (1987) · Zbl 0602.73091
[135] Svanvberg, K., A globally convergent version of MMA without linesearch, (Olhoff, N.; Rovaznus, G. I.N., Proceedings of the First World Congress of Structural and Multidisciplinary Optimization, ISSMO (1995), Elsevier Science Ltd.: Elsevier Science Ltd. Oxford), 9-16
[136] Tortorelli, D. A., Sensitivity analysis for non-linear constrained elastostatic systems, Int. J. Numer. Methods Engrg., 33, 1643-1660 (1992) · Zbl 0767.73050
[137] Tortorelli, D. A.; Michaleris, P., Design sensitivity analysis: overview and review, Inverse Probl. Engrg., 1, 71-105 (1994)
[138] Tortorelli, D. A.; Michaleris, P.; Vidal, C. A., Tangent operators and design sensitivity formulations for transient non-linear coupled problems with application to elastoplasticity, Int. J. Numer. Methods Engrg., 37, 2471-2499 (1994) · Zbl 0808.73057
[139] Tortorelli, D. A.; Subramani, G.; Lu Stephen, C. Y., Sensitivity analysis for coupled thermoelastic systems, Int. J. Solids Struct., 27, 12, 1477-1497 (1991) · Zbl 0825.73479
[140] Tortorelli, D. A.; Wabg, Z., A systematic approach to shape sensitivity analysis, Int. J. Solids Struct., 30, 9, 1181-1212 (1993) · Zbl 0778.73043
[141] Van Veldhuizen, D. A.; Lamont, G. B., Multiobjective evolutionary algorithms: analyzing the state-of-the-art, Evolution. Comput., 8, 2, 125-147 (2000)
[142] Vieilledent, D.; Fourment, L., Shape optimization of axisymmetric preform tools in forging using a direct differentiation method, Int. J. Numer. Methods Engrg., 52, 1301-1321 (2001) · Zbl 1112.74462
[143] Zabaras, N.; Bao, Y.; Srikanth, A.; Frazier, W. G., A continuum lagrangian sensitivity analysis for metal forming processes with applications to die design problems, Int. J. Numer. Methods Engrg., 48, 679-720 (2000) · Zbl 0987.74052
[144] Zhang, L.; Subbarayan, G., An evaluation of back-propagation neural networks for the optimal design of structural systems: Part I. training procedures, Comput. Methods Appl. Mech. Engrg., 191, 2873-2886 (2002) · Zbl 1131.74332
[145] Zhang, L.; Subbarayan, G., An evaluation of back-propagation neural networks for the optimal design of structural systems: Part II. numerical evaluation, Comput. Methods Appl. Mech. Engrg., 191, 2887-2904 (2002) · Zbl 1131.74333
[146] W.H. Zhang, C. Fleury, Two-point based sequential convex approximations for structural optimization, in: M. Hogge, E. Dick (Eds.), 3ème Congrès National Belge de Mécanique Théorique et Appliquée, Université de Liège, May 1994.; W.H. Zhang, C. Fleury, Two-point based sequential convex approximations for structural optimization, in: M. Hogge, E. Dick (Eds.), 3ème Congrès National Belge de Mécanique Théorique et Appliquée, Université de Liège, May 1994.
[147] Zhang, W. H.; Fleury, C., A modification of convex approximations methods for structural optimization., Comput. Struct., 64, 1-4, 89-95 (1997) · Zbl 0919.73099
[148] Zhao, J.; Wang, F., Parameter identification by neural network for intelligent deep drawing of axisymmetric workpieces, J. Mater. Process. Technol., 166, 387-391 (2005)
[149] Zhao, K. M.; Lee, J. K., Finite element analysis of the three-point bending of sheet metals, J. Mater. Process. Technol., 122, 6-11 (2002)
[150] Zillober, C., A globally convergent version of the method of moving asymptotes, Struct. Optim., 6, 166-174 (1993)
[151] E. Zitzler, Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, Ph.D. thesis, Swiss Federal Institute of Technology, Zurich, 1999.; E. Zitzler, Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, Ph.D. thesis, Swiss Federal Institute of Technology, Zurich, 1999.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.