×

Initial solution estimation of one-step inverse isogeometric analysis for sheet metal forming with complex topologies. (English) Zbl 1507.74544

Summary: The one-step inverse isogeometric analysis method has been successfully applied in sheet metal forming with simple geometries. Generally, actual stamping parts frequently contain numerous trimmed NURBS-based CAD surfaces. The key step in sheet metal forming is to unfold the undevelopable CAD model onto a planar domain and obtain a good initial solution. In this study, we estimate the initial solution of stamping parts with complex topologies using an energy-based algorithm. The trimmed surface analysis technique and Nitsche’s method are adopted for trimmed and multi-patch isogeometric analysis. A new coordinate transformation system is used to avoid special treatment for negative angle and vertical wall problems, which are common in metal sheet forming. We demonstrate our algorithm with three examples and compare the results with one-step inverse isogeometric analysis of simple geometry or the traditional finite element method. These examples illustrate the performance of the new method and its applicability for the integration of design and analysis in sheet metal forming with complex topologies.

MSC:

74S22 Isogeometric methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39, 4135-4195 (2005) · Zbl 1151.74419
[2] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009
[3] Nguyen, V. P.; Anitescu, C.; Bordas, S. P.A.; Rabczuk, T., Isogeometric analysis: an overview and computer implementation aspects, Math. Comput. Simulation, 117, 89-116 (2015) · Zbl 1540.65492
[4] Benson, D. J.; Bazilevs, Y.; Hsu, M. C.; Hughes, T. J.R., Isogeometric shell analysis: the Reissner-Mindlin shell, Comput. Methods Appl. Mech. Engrg., 199, 5, 276-289 (2010) · Zbl 1227.74107
[5] Benson, D. J.; Bazilevs, Y.; Hsu, M.-C.; Hughes, T. J.R., A large deformation, rotation-free, isogeometric shell, Comput. Methods Appl. Mech. Engrg., 200, 13-16, 1367-1378 (2011) · Zbl 1228.74077
[6] Ablat, M. A.; Qattawi, A., Numerical simulation of sheet metal forming: a review, Int. J. Adv. Manuf. Technol., 89, 1-4, 1235-1250 (2017)
[7] Guo, Y. Q.; Batoz, J. L.; Detraux, J. M.; Duroux, P., Finite element procedures for strain estimations of sheet metal forming parts, Internat. J. Numer. Methods Engrg., 30, 8, 1385-1401 (1990) · Zbl 0716.73087
[8] Batoz, J. L.; Guo, Y. Q.; Mercier, F., The inverse approach with simple triangular shell elements for large strain predictions of sheet metal forming parts, Eng. Comput., 15, 7, 864-892 (1998) · Zbl 0954.74057
[9] Guo, Y. Q.; Batoz, J. L.; Naceur, H.; Bouabdallah, S.; Mercier, F.; Barlet, O., Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach, Comput. Struct., 78, 1-3, 133-148 (2000)
[10] Liu, S. D.; Karima, M., A one step finite element approach for product design of sheet metal stampings, (Numiform, Vol. 92 (1992)), 497-502
[11] Huh, H.; Han, S. S.; Yang, D. Y., Modified membrane finite element formulation considering bending effects in sheet metal forming analysis, Int. J. Mech. Sci., 36, 7, 659-671 (1994) · Zbl 0808.73070
[12] Lee, C. H.; Huh, H., Blank design and strain prediction of automobile stamping parts by an inverse finite element approach, J. Mater Process. Technol., 63, 1-3, 645-650 (1997)
[13] Lee, C. H.; Huh, H., Blank design and strain estimates for sheet metal forming processes by a finite element inverse approach with initial guess of linear deformation, J. Mater Process. Technol., 82, 1-3, 145-155 (1998)
[14] Chung, K.; Richmond, O., Ideal forming— I. Homogeneous deformation with minimum plastic work, Int. J. Mech. Sci., 34, 7, 575-591 (1992) · Zbl 0765.73026
[15] Chung, K.; Richmond, O., Ideal forming—II. Sheet forming with optimum deformation, Int. J. Mech. Sci., 34, 8, 617-633 (1992) · Zbl 0765.73027
[16] Lee, C. H.; Huh, H., Three dimensional multi-step inverse analysis for the optimum blank design in sheet metal forming processes, J. Mater Process. Technol., 80, 76-82 (1998)
[17] Kim, S. H.; Kim, S. H.; Huh, H., Finite element inverse analysis for the design of intermediate dies in multi-stage deep-drawing processes with large aspect ratio, J. Mater Process. Technol., 113, 1-3, 779-785 (2001)
[18] Lee, C.; Cao, J., Shell element formulation of multi-step inverse analysis for axisymmetric deep drawing process, Internat. J. Numer. Methods Engrg., 50, 3, 681-706 (2001) · Zbl 1011.74074
[19] Huang, Y.; Chen, Y. P.; Du, R. X., A new approach to solve key issues in multi-step inverse finite-element method in sheet metal stamping, Int. J. Mech. Sci., 48, 6, 591-600 (2006) · Zbl 1192.74358
[20] Liu, W. J.; Zhang, X. K.; Hu, P., Developments of multi-step simulations in sheet metal forming processes, Int. J. Adv. Manuf. Technol., 93, 1-4, 1379-1397 (2017)
[21] Zhang, X. K.; Zhu, X. F.; Wang, C. S., Initial solution estimation for one-step inverse isogeometric analysis in sheet metal stamping, Comput. Methods Appl. Mech. Engrg., 330, 629-645 (2018) · Zbl 1439.74236
[22] Wang, C. S.; Zhang, X. K.; Shen, G. Z.; Wang, Y., One-step inverse isogeometric analysis for the simulation of sheet metal forming, Comput. Methods Appl. Mech. Engrg., 349, 458-476 (2019) · Zbl 1441.74277
[23] Shamloofard, M.; Assempour, A., Development of an inverse isogeometric methodology and its application in sheet metal forming process, Appl. Math. Model., 73, SEP., 266-284 (2019)
[24] Isazadeh, A. R.; Shamloofard, M.; Assempour, A., Some improvements on the one-step inverse isogeometric analysis by proposing a multi-step inverse isogeometric methodology in sheet metal stamping processes, Appl. Math. Model., 91, 476-492 (2021) · Zbl 1481.74713
[25] Shamloofard, M.; Assempour, A., Simulation of sheet metal forming processes by presenting a bending-dependent inverse isogeometric methodology, Int. J. Adv. Manuf. Technol., 112, 1389-1408 (2021)
[26] Sowerby, R.; Duncan, J. L.; Chu, E., The modelling of sheet metal stampings, Int. J. Mech. Sci., 28, 7, 415-430 (1986)
[27] J.C. Gerdeen, P. Chen, Geometric mapping method of computer modeling of sheet metal forming, in: Numiform’89, Numerical Methods in Industrial Forming Processes, Balkema, Rotterdam, 1989, pp. 437-444.
[28] Guo, Y. Q.; Naceur, H.; Debray, K.; Bogard, F., Initial solution estimation to speed up inverse approach in stamping modeling, Eng. Comput., 20, 7, 810-834 (2003) · Zbl 1063.74512
[29] Wu, J. J.; Wu, X.; Deng, L. C.; Naceur, H., A comprehensive blank development method for forming sheet metal parts, Int. J. Adv. Manuf. Technol., 71, 5, 843-855 (2014)
[30] Tang, B. T.; Zhao, Z.; Hagenah, H.; Lu, X. Y., Energy based algorithms to solve initial solution in one-step finite element method of sheet metal stamping, Comput. Methods Appl. Mech. Eng., 196, 2187-2196 (2007) · Zbl 1173.74445
[31] Zhang, X. K.; Hu, S. B.; Lang, Z. K.; Guo, W.; Hu, P., Energy-based initial guess estimation method for one-step simulation, Int. J. Comput. Methods Eng. Sci. Mech., 8, 6, 411-417 (2007) · Zbl 1144.74381
[32] Marussig, B.; Hughes, T. J.R., A review of trimming in isogeometric analysis: Challenges, data exchange and simulation aspects, Arch. Comput. Methods Eng., 25, 4, 1059-1127 (2018)
[33] Kim, H. J.; Seo, Y. D.; Youn, S. K., Isogeometric analysis for trimmed CAD surfaces, Comput. Methods Appl. Mech. Engrg., 198, 37, 2982-2995 (2009) · Zbl 1229.74131
[34] Schmidt, R.; Wchner, R.; Bletzinger, K. U., Isogeometric analysis of trimmed NURBS geometries, Comput. Methods Appl. Mech. Engrg., 241, 93-111 (2012) · Zbl 1353.74079
[35] Schillinger, D.; Dedè, L.; Scott, M. A.; Evans, J. A.; Borden, M. J.; Rank, E.; Hughes, T. J.R., An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces, Comput. Methods Appl. Mech. Engrg., 249, 116-150 (2012) · Zbl 1348.65055
[36] Schillinger, D.; Ruess, M., The finite cell method: a review in the context of higher-order structural analysis of CAD and image-based geometric models, Arch. Comput. Methods Eng., 22, 3, 391-455 (2015) · Zbl 1348.65056
[37] Breitenberger, M.; Apostolatos, A.; Philipp, B.; Wüchner, R.; Bletzinger, K.-U., Analysis in computer aided design: Nonlinear isogeometric B-Rep analysis of shell structures, Comput. Methods Appl. Mech. Engrg., 284, 401-457 (2015) · Zbl 1425.65030
[38] Zhu, X. F.; Hu, P.; Ma, Z. D., B++ splines with applications to isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 311, 503-536 (2016) · Zbl 1439.65021
[39] Nagy, A.; Benson, D., On the numerical integration of trimmed isogeometric elements, Comput. Methods Appl. Mech. Engrg., 284, 165-185 (2015) · Zbl 1425.65040
[40] Brivadis, E.; Buffa, A.; Wohlmuth, B.; Wunderlich, L., Isogeometric mortar methods, Comput. Methods Appl. Mech. Engrg., 284, 292-319 (2015) · Zbl 1425.65150
[41] Adam, N.; Le Tallec, P.; Zarroug, M., Multipatch isogeometric mortar methods for thick shells, Comput. Methods Appl. Mech. Engrg., 372, Article 113403 pp. (2020) · Zbl 1506.74381
[42] Leidinger, L. F.; Breitenberger, M.; Bauer, A. M.; Hartmann, S.; Wüchner, R.; Bletzinger, K.-U.; Duddeck, F.; Song, L., Explicit dynamic isogeometric b-rep analysis of penalty-coupled trimmed NURBS shells, Comput. Methods Appl. Mech. Engrg., 351, 891-927 (2019) · Zbl 1441.74256
[43] Nguyen, V. P.; Kerfriden, P.; Brino, M.; Bordas, S. P.; Bonisoli, E., Nitsche’s method for two and three dimensional NURBS patch coupling, Comput. Mech., 53, 6, 1163-1182 (2014) · Zbl 1398.74379
[44] Guo, Y. J.; Heller, J.; Hughes, T. J.R.; Ruess, M.; Schillinger, D., Variationally consistent isogeometric analysis of trimmed thin shells at finite deformations, based on the step exchange format, Comput. Methods Appl. Mech. Engrg., 336, 39-79 (2018) · Zbl 1440.74397
[45] Du, X. X.; Zhao, G.; Wang, W.; Fang, H., Nitsche’s method for non-conforming multipatch coupling in hyperelastic isogeometric analysis, Comput. Mech., 65, 3, 687-710 (2020) · Zbl 1477.74114
[46] L. Piegl, W. Tiller, The NURBS Book, second ed., Springer-Verlag Inc., New York, NY, USA. · Zbl 0828.68118
[47] Farin, G., Curves and Surfaces for CAGD: A Practical Guide (2002), Morgan Kaufmann
[48] Kuipers, J. B., Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality (1999), Princeton University Press · Zbl 1053.70001
[49] Brino, M., CAD-CAE Integration and Isogeometric Analysis: Trivariate Multipatch and Applications (2015), Politecnico di Torino, (Ph.D. thesis)
[50] Embar, A.; Dolbow, J.; Harari, I., Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements, Internat. J. Numer. Methods Engrg., 83, 7, 877-898 (2010) · Zbl 1197.74178
[51] Annavarapu, C.; Hautefeuille, M.; Dolbow, J. E., A robust Nitsche’s formulation for interface problems, Comput. Methods Appl. Mech. Engrg., 225, 44-54 (2012) · Zbl 1253.74096
[52] Annavarapu, C.; Hautefeuille, M.; Dolbow, J. E., Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods, Internat. J. Numer. Methods Engrg., 92, 2, 206-228 (2012) · Zbl 1352.74314
[53] Jiang, W.; Annavarapu, C.; Dolbow, J. E.; Harari, I., A robust Nitsche’s formulation for interface problems with spline-based finite elements, Internat. J. Numer. Methods Engrg., 104, 7, 676-696 (2015) · Zbl 1352.65515
[54] Griebel, M.; Schweitzer, M. A., A particle-partition of unity method part v: boundary conditions, (Geometric Analysis and Nonlinear Partial Differential Equations (2003), Springer), 519-542 · Zbl 1033.65102
[55] Dolbow, J.; Harari, I., An efficient finite element method for embedded interface problems, Internat. J. Numer. Methods Engrg., 78, 2, 229-252 (2009) · Zbl 1183.76803
[56] Guo, Y. J.; Zou, Z. H.; Ruess, M., Isogeometric multi-patch analyses for mixed thin shells in the framework of non-linear elasticity, Comput. Methods Appl. Mech. Engrg., 380, Article 113771 pp. (2021) · Zbl 1506.74186
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.