×

Tool shape design in V-bending and channel forming processes by inverse analysis of springback. (English) Zbl 1277.74011

Summary: Elastic recovery of a formed part in unloading, known as springback, causes shape errors in the final product of sheet metal forming processes. Several approaches have been proposed for the analysis of springback and compensating its error. The springback occurs at the last step of process and the final geometry of the work piece can be obtained at the end of direct process modelling. In this article, an algorithm for inverse springback modelling is presented. In this approach, required conditions for the inverse movement of final product towards the end of the loading state are prepared. Having the product geometry at the end of the loading, the geometry of die parts can be designed for the production of a target shape. For this inverse movement in FE modelling, the optimum constrained node and balanced contact forces are proposed in this algorithm. The presented approach is verified for symmetric and asymmetric bending processes. The results have shown that this approach can model symmetric and asymmetric processes inversely with tight tolerances. An optimization algorithm for compensating springback error and iterative tool design is presented based on inverse modelling. This algorithm is verified on symmetric V-bending process and its convergence rate is compared to the direct trial trend. The inverse approach shows more convergence rate in this comparison. Performing an experimental test on symmetric V-bending and asymmetric bending processes, the accuracy of the presented algorithms is investigated. The results show that the presented algorithms are efficient and accurate in both cases.

MSC:

74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74S30 Other numerical methods in solid mechanics (MSC2010)
Full Text: DOI

References:

[1] DOI: 10.1016/S0924-0136(03)00163-8 · doi:10.1016/S0924-0136(03)00163-8
[2] DOI: 10.1016/j.jmatprotec.2006.12.026 · doi:10.1016/j.jmatprotec.2006.12.026
[3] DOI: 10.1016/j.jmatprotec.2005.02.236 · doi:10.1016/j.jmatprotec.2005.02.236
[4] Gredeen JC, Proceedings of the 3rd International Conference on Numerical Methods in Industrial Forming Processes 89 pp 437– (1989)
[5] Mouatassim, MEl, Thomas, B, Jameux, JP and Pasquale, EDe.An industrial finite element code for one step simulation of sheet metal forming. Proceedings of the International Conference on Numerical Methods in Industrial Forming Processes, NUMIFORM’95. Ithaca, NY. June. pp.761–766.
[6] DOI: 10.1108/02644409810236894 · Zbl 0954.74057 · doi:10.1108/02644409810236894
[7] DOI: 10.1016/j.jmatprotec.2004.04.036 · doi:10.1016/j.jmatprotec.2004.04.036
[8] DOI: 10.1016/S0007-8506(07)62457-3 · doi:10.1016/S0007-8506(07)62457-3
[9] DOI: 10.1115/1.2806830 · doi:10.1115/1.2806830
[10] DOI: 10.1016/S0924-0136(01)00805-6 · doi:10.1016/S0924-0136(01)00805-6
[11] DOI: 10.1115/1.3226067 · doi:10.1115/1.3226067
[12] DOI: 10.1016/j.ijmecsci.2004.06.006 · doi:10.1016/j.ijmecsci.2004.06.006
[13] DOI: 10.1115/1.1789955 · doi:10.1115/1.1789955
[14] DOI: 10.1016/0020-7403(92)90077-T · doi:10.1016/0020-7403(92)90077-T
[15] DOI: 10.1016/0924-0136(92)90206-8 · doi:10.1016/0924-0136(92)90206-8
[16] DOI: 10.1016/0890-6955(95)00023-2 · doi:10.1016/0890-6955(95)00023-2
[17] DOI: 10.1016/j.ijmecsci.2006.09.008 · doi:10.1016/j.ijmecsci.2006.09.008
[18] DOI: 10.1016/j.jmatprotec.2005.04.027 · doi:10.1016/j.jmatprotec.2005.04.027
[19] DOI: 10.1115/1.2673527 · doi:10.1115/1.2673527
[20] DOI: 10.1016/j.ijplas.2006.04.005 · Zbl 1349.74378 · doi:10.1016/j.ijplas.2006.04.005
[21] DOI: 10.1016/j.commatsci.2006.05.001 · doi:10.1016/j.commatsci.2006.05.001
[22] DOI: 10.1115/1.2673527 · doi:10.1115/1.2673527
[23] DOI: 10.1243/09544054JEM1191 · doi:10.1243/09544054JEM1191
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.