×

Adaptive selectivity representations: design and applications. (English) Zbl 1157.42314

Summary: This paper focuses on the development of a new two-dimensional representation for images that can capture different features in images, ranging from highly directional ones to fully isotropic ones. We propose a multiselectivity analysis, defined by combining an isotropic multiscale and multidirection decomposition. The result is new half-continuous frame for each selectivity level. The angular selectivity of these frames grows with selectivity level. This selectivity level can be adapted locally to the content of the image; so it can be seen as an adaptive selectivity representation, which present adaptively isotropic, directional and intermediary features in images. The numerical experiments presented in this paper demonstrate that the adaptive selectivity approach is very competitive in image denoising and enhancement.

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
Full Text: DOI

References:

[1] Mallat S., A Wavelet Tour of Signal Processing (1998) · Zbl 1125.94306
[2] DOI: 10.1017/CBO9780511543395 · doi:10.1017/CBO9780511543395
[3] DOI: 10.1109/18.720544 · Zbl 1125.94311 · doi:10.1109/18.720544
[4] DOI: 10.1109/18.119733 · Zbl 0754.68118 · doi:10.1109/18.119733
[5] DOI: 10.1142/S0219691306001452 · Zbl 1141.68592 · doi:10.1142/S0219691306001452
[6] DOI: 10.1109/TIP.2002.999670 · doi:10.1109/TIP.2002.999670
[7] DOI: 10.1002/(SICI)1098-1098(199623)7:3<152::AID-IMA1>3.0.CO;2-7 · doi:10.1002/(SICI)1098-1098(199623)7:3<152::AID-IMA1>3.0.CO;2-7
[8] DOI: 10.1006/acha.1998.0255 · Zbl 0936.42017 · doi:10.1006/acha.1998.0255
[9] DOI: 10.1109/83.535851 · doi:10.1109/83.535851
[10] DOI: 10.1214/aos/1018031261 · Zbl 0957.62029 · doi:10.1214/aos/1018031261
[11] DOI: 10.1142/S0219691303000074 · Zbl 1044.94503 · doi:10.1142/S0219691303000074
[12] DOI: 10.1109/TIP.2002.1014998 · Zbl 1288.94011 · doi:10.1109/TIP.2002.1014998
[13] E. Candés and D. Donoho, Curve and Surface Fitting, eds. A. Cohen, C. Rabut and L. L. Schumaker (Vanderbilt University Press, 1999) pp. 105–120.
[14] DOI: 10.1109/TIP.2005.859376 · doi:10.1109/TIP.2005.859376
[15] DOI: 10.1109/TIP.2006.877507 · doi:10.1109/TIP.2006.877507
[16] DOI: 10.1142/S0219691307002117 · Zbl 1197.42029 · doi:10.1142/S0219691307002117
[17] DOI: 10.1117/12.504800 · doi:10.1117/12.504800
[18] DOI: 10.1142/S0219691307002051 · Zbl 1213.42143 · doi:10.1142/S0219691307002051
[19] Torrsani B., Analyse Continue par Ondelettes. Savoirs Actuels (1995)
[20] DOI: 10.1002/cpa.3160410705 · Zbl 0644.42026 · doi:10.1002/cpa.3160410705
[21] Haykin S., Communication Systems (2000)
[22] Li L., Int. J. Wavelets Multiresolut. Inf. Process. 1 pp 291–
[23] Starck J.-L., IEEE Trans. Image Process. 10 pp 706–
[24] Ramponi G., J. Electron. Imaging 5 pp 353–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.