×

Fractional smoothness of images of logarithmically concave measures under polynomials. (English) Zbl 1390.28002

Summary: We show that a measure on the real line, that is the image of a log-concave measure under a polynomial of degree \(d\), possesses a density from the Nikolskii-Besov class of fractional order \(1 / d\). This result is used to prove an estimate for the total variation distance between such measures in terms of the Fortet-Mourier distance.

MSC:

28A10 Real- or complex-valued set functions
28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)

References:

[1] Arutyunyan, L. M.; Kosov, E. D., Estimates for integral norms of polynomials on spaces with convex measures, Sb. Math., 206, 8, 1030-1048 (2015) · Zbl 1331.28029
[2] Arutyunyan, L. M.; Yaroslavtsev, I. S., On measurable polynomials on infinite-dimensional spaces, Dokl. Math., 87, 2, 214-217 (2013) · Zbl 1275.28002
[3] Ball, K., Logarithmically concave functions and sections of convex sets in \(R^n\), Studia Math., 88, 1, 69-84 (1988) · Zbl 0642.52011
[4] Bally, V.; Caramellino, L., Total variation distance between stochastic polynomials and invariance principles, preprint · Zbl 1456.60070
[5] Besov, O. V.; Il’in, V. P.; Nikolskiĭ, S. M., Integral Representations of Functions and Imbedding Theorems, vols. I, II (1979), Winston & Sons/Halsted Press: Winston & Sons/Halsted Press Washington/New York-Toronto-London · Zbl 0392.46023
[6] Bobkov, S. G., Isoperimetric and analytic inequalities for log-concave probability measures, Ann. Probab., 27, 4, 1903-1921 (1999) · Zbl 0964.60013
[7] Bobkov, S. G., Remarks on the growth of \(L^p\)-norms of polynomials, (Geometric Aspects of Functional Analysis. Geometric Aspects of Functional Analysis, Lecture Notes in Math., vol. 1745 (2000), Springer), 27-35 · Zbl 0976.46005
[8] Bobkov, S. G., Some generalizations of Prokhorov’s results on Khinchin-type inequalities for polynomials, Theory Probab. Appl., 45, 4, 644-647 (2000) · Zbl 0990.60014
[9] Bogachev, V. I., Measure Theory, vols. 1, 2 (2007), Springer: Springer Berlin · Zbl 1120.28001
[10] Bogachev, V. I., Differentiable Measures and the Malliavin Calculus (2010), Amer. Math. Soc.: Amer. Math. Soc. Providence, Rhode Island · Zbl 0929.58015
[11] Bogachev, V. I.; Kosov, E. D.; Nourdin, I.; Poly, G., Two properties of vectors of quadratic forms in Gaussian random variables, Theory Probab. Appl., 59, 2, 208-221 (2015) · Zbl 1320.60040
[12] Bogachev, V. I.; Kosov, E. D.; Popova, S. N., New approach to the Nikolskii-Besov classes, preprint · Zbl 1448.46025
[13] Bogachev, V. I.; Kosov, E. D.; Zelenov, G. I., Fractional smoothness of distributions of polynomials and a fractional analog of the Hardy-Landau-Littlewood inequality, preprint · Zbl 1352.60054
[14] Bogachev, V. I.; Zelenov, G. I., On convergence in variation of weakly convergent multidimensional distributions, Dokl. Math., 91, 2, 138-141 (2015) · Zbl 1432.60011
[15] Borell, C., Convex measures on locally convex spaces, Ark. Mat., 12, 239-252 (1974) · Zbl 0297.60004
[16] Carbery, A.; Wright, J., Distributional and \(L^q\) norm inequalities for polynomials over convex bodies in \(R^n\), Math. Res. Lett., 8, 3, 233-248 (2001) · Zbl 0989.26010
[17] Fradelizi, M.; Guédon, O., The extreme points of subsets of s-concave probabilities and a geometric localization theorem, Discrete Comput. Geom., 31, 2, 327-335 (2004) · Zbl 1056.60017
[18] Hu, Y.; Lu, F.; Nualart, D., Convergence of densities of some functionals of Gaussian processes, J. Funct. Anal., 266, 2, 814-875 (2014) · Zbl 1290.60045
[19] Kannan, R.; Lovasz, L.; Simonovits, M., Isoperimetric problems for convex bodies and a localization lemma, Discrete Comput. Geom., 13, 541-559 (1995) · Zbl 0824.52012
[20] Klartag, B., On convex perturbations with a bounded isotropic constant, Geom. Funct. Anal., 16, 6, 1274-1290 (2006) · Zbl 1113.52014
[21] Klartag, B., Power-law estimates for the central limit theorem for convex sets, J. Funct. Anal., 245, 1, 284-310 (2007) · Zbl 1140.52004
[22] Kosov, E. D., Besov classes on finite and infinite dimensional spaces and embedding theorems, preprint · Zbl 1434.46021
[23] Krugova, E. P., On translates of convex measures, Sb. Math., 188, 2, 227-236 (1997) · Zbl 0886.28014
[24] Lovasz, L.; Simonovits, M., Random walks in a convex body and an improved volume algorithm, Random Structures Algorithms, 4, 4, 359-412 (1993) · Zbl 0788.60087
[25] Malliavin, P., Stochastic calculus of variation and hypoelliptic operators, (Proc. Intern. Symp. SDE. Proc. Intern. Symp. SDE, Kyoto, 1976 (1978), Kinokuniya), 195-263 · Zbl 0411.60060
[26] Nazarov, F.; Sodin, M.; Volberg, A., The geometric Kannan-Lovasz-Simonovits lemma, dimension-free estimates for the distribution of the values of polynomials, and the distribution of the zeros of random analytic functions, St. Petersburg Math. J., 14, 2, 351-366 (2003) · Zbl 1030.60040
[27] Nikol’skii, S. M., Approximation of Functions of Several Variables and Imbedding Theorems (1975), Springer-Verlag: Springer-Verlag New York-Heidelberg, (Russian ed.: Moscow, 1977) · Zbl 0185.37901
[28] Nourdin, I.; Nualart, D.; Poly, G., Absolute continuity and convergence of densities for random vectors on Wiener chaos, Electron. J. Probab., 18, 22, 1-19 (2013) · Zbl 1285.60053
[29] Nourdin, I.; Poly, G., Convergence in total variation on Wiener chaos, Stochastic Process. Appl., 123, 2, 651-674 (2013) · Zbl 1259.60029
[30] Nourdin, I.; Poly, G., An invariance principle under the total variation distance, Stochastic Process. Appl., 125, 6, 2190-2205 (2015) · Zbl 1321.60065
[31] Nourdin, I.; Poly, G., Convergence in law implies convergence in total variation for polynomials in independent Gaussian, Gamma or Beta random variables, (High Dimensional Probability VII: The Cargése Volume, Progress in Probability (2016)) · Zbl 1382.60012
[32] Nualart, D.; Peccati, G., Central limit theorems for sequences of multiple stochastic integrals, Ann. Probab., 33, 1, 177-193 (2005) · Zbl 1097.60007
[33] Shigekawa, I., Derivatives of Wiener functionals and absolute continuity of induced measures, J. Math. Kyoto Univ., 20, 2, 263-289 (1980) · Zbl 0476.28008
[34] Stein, E., Singular Integrals and Differentiability Properties of Functions (1970), Princeton University Press: Princeton University Press Princeton · Zbl 0207.13501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.