×

Schemes of modules over gentle algebras and laminations of surfaces. (English) Zbl 1491.16021

The class of gentle algebras was defined by I. Assem and A. Skowroński [Math. Z. 195, 269–290 (1987; Zbl 0601.16022)]. Module categories over gentle algebras can be described combinatorially [B. Wald and J. Waschbüsch, J. Algebra 95, 480–500 (1985; Zbl 0567.16017); M. C. R. Butler and C. M. Ringel, Commun. Algebra 15, 145–179 (1987; Zbl 0612.16013)]. The class of Jacobian algebras associated to triangulations of unpunctured marked surfaces is a special class of gentle algebras. In this paper, the authors study some geometric properties of the representation theory of gentle algebras. First, they classify the irreducible components of the affine schemes of modules over gentle algebras and describe all smooth points of these schemes. They show that most of irreducible components are generically reduced and if a gentle algebra \(A\) has no loops, then each irreducible component is generically reduced. For the class of Jacobian algebras associated to triangulations of unpunctured marked surfaces they give a bijection between the set of generically \(\tau\)-reduced decorated irreducible components and the set of laminations of the surface, where a lamination of an unpunctured marked surface \((S,M)\) is a set of homotopy classes of curves and loops in \((S,M)\), which do not intersect each other, together with a positive integer attached to each class [G. Musiker et al., Compos. Math. 149, No. 2, 217–263 (2013; Zbl 1263.13024)]. This bijection has some application to cluster algebras were defined by S. Fomin and A. Zelevinsky [J. Am. Math. Soc. 15, No. 2, 497–529 (2002; Zbl 1021.16017)]. C. Geiß et al. [J. Am. Math. Soc. 25, No. 1, 21–76 (2012; Zbl 1236.13020)] proved that the generic Caldero-Chapoton functions form a basis, called the generic basis, of the coefficient-free upper cluster algebra \(U_{(S,M)}\) associated with an unpunctured marked surface \((S,M)\). By using the above bijection, the authors prove that the generic basis coincides with Musiker-Schiffler-Williams’ bangle basis [G. Musiker et al., Compos. Math. 149, No. 2, 217–263 (2013; Zbl 1263.13024)] of the coefficient-free cluster algebra \(A_{(S,M)}\) associated with an unpunctured marked surface \((S,M)\).

MSC:

16P10 Finite rings and finite-dimensional associative algebras
16G20 Representations of quivers and partially ordered sets
13F60 Cluster algebras

References:

[1] Adachi, T.; Iyama, O.; Reiten, I., \( \tau \)-tilting theory, Compos. Math., 150, 3, 415-452 (2014) · Zbl 1330.16004 · doi:10.1112/S0010437X13007422
[2] D. Allegretti, ategorified canonical bases and framed BPS states. Sel. Math. New Ser. 25, 69 (2019). doi:10.1007/s00029-019-0518-3 · Zbl 1505.13032
[3] C. Amiot, T. Brüstle, Derived equivalences between skew-gentle algebras using orbifolds. Preprint (2019), 46 pp., arXiv:1912.04367
[4] Assem, I.; Brüstle, T.; Charbonneau-Jodoin, G.; Plamondon, P-G, Gentle algebras arising from surface triangulations, Algebra Number Theory, 4, 2, 201-229 (2010) · Zbl 1242.16011 · doi:10.2140/ant.2010.4.201
[5] Assem, I.; Skowroński, A., Iterated tilted algebras of type \({\widetilde{A}}_n\), Math. Z., 195, 2, 269-290 (1987) · Zbl 0601.16022 · doi:10.1007/BF01166463
[6] I. Assem, D. Simson, A. Skowroński, Elements of the representation theory of associative algebras, Vol. 1. Techniques of representation theory. London Mathematical Society Student Texts, 65. Cambridge University Press, Cambridge, 2006. x+458 pp · Zbl 1092.16001
[7] M. Auslander, I. Reiten, S. Smalø, Representation theory of Artin algebras. Corrected reprint of the 1995 original. Cambridge Studies in Advanced Mathematics, 36. Cambridge University Press, Cambridge, 1997. xiv+425 pp · Zbl 0834.16001
[8] K. Baur, S. Schroll, Higher extensions for gentle algebras.Bulletin des Sciences Mathématiques, Vol. 170 (2021), [103010], doi:10.1016/j.bulsci.2021.103010 · Zbl 1467.16010
[9] Brüstle, T., Kit algebras, J. Algebra, 240, 1, 1-24 (2001) · Zbl 0991.16006 · doi:10.1006/jabr.2000.8709
[10] Brüstle, T.; Zhang, J., On the cluster category of a marked surface without punctures, Algebra Number Theory, 5, 4, 529-566 (2011) · Zbl 1250.16013 · doi:10.2140/ant.2011.5.529
[11] Butler, MCR; Ringel, CM, Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra, 15, 1-2, 145-179 (1987) · Zbl 0612.16013 · doi:10.1080/00927878708823416
[12] I. Canakci, S. Schroll, Lattice bijections for string modules, snake graphs and the weak Bruhat order. Advances in Applied Mathematics, 126, 1-22. [102094]. doi:10.1016/j.aam.2020.102094 · Zbl 1484.16022
[13] Carroll, A., Generic modules for string algebras, J. Algebra, 437, 177-201 (2015) · Zbl 1347.16010 · doi:10.1016/j.jalgebra.2015.03.035
[14] Carroll, A.; Chindris, C., On the invariant theory for acyclic gentle algebras, Trans. Amer. Math. Soc., 367, 5, 3481-3508 (2015) · Zbl 1347.16007 · doi:10.1090/S0002-9947-2014-06191-6
[15] Carroll, A.; Chindris, C.; Kinser, R.; Weyman, J., Moduli Spaces of Representations of Special Biserial Algebras, Int. Math. Res. Not. IMRN, 2, 403-421 (2020) · Zbl 1490.16029 · doi:10.1093/imrn/rny028
[16] A. Carroll, J. Weyman, Semi-invariants for gentle algebras. Noncommutative birational geometry, representations and combinatorics, 111-136, Contemp. Math., 592, Amer. Math. Soc., Providence, RI, 2013 · Zbl 1325.16009
[17] Cerulli Irelli, G.; Labardini-Fragoso, D.; Schröer, J., Caldero-Chapoton algebras, Trans. Amer. Math. Soc., 367, 4, 2787-2822 (2015) · Zbl 1366.13016 · doi:10.1090/S0002-9947-2014-06175-8
[18] Crawley-Boevey, W., Maps between representations of zero-relation algebras, J. Algebra, 126, 2, 259-263 (1989) · Zbl 0685.16018 · doi:10.1016/0021-8693(89)90304-9
[19] W. Crawley-Boevey, On tame algebras and bocses. In: Proc. London Math. Soc. (3) 56 (1988), 451-483 · Zbl 0661.16026
[20] Crawley-Boevey, W.; Schröer, J., Irreducible components of varieties of modules, J. Reine Angew. Math., 553, 201-220 (2002) · Zbl 1062.16019
[21] De Concini, C.; Strickland, E., On the variety of complexes, Adv. Math., 41, 1, 57-77 (1981) · Zbl 0471.14026 · doi:10.1016/S0001-8708(81)80004-7
[22] Derksen, H.; Weyman, J.; Zelevinsky, A., Quivers with potentials and their representations, I. Mutations. Selecta Math. (N.S.), 14, 1, 59-119 (2008) · Zbl 1204.16008 · doi:10.1007/s00029-008-0057-9
[23] Derksen, H.; Weyman, J.; Zelevinsky, A., Quivers with potentials and their representations II: applications to cluster algebras, J. Amer. Math. Soc., 23, 3, 749-790 (2010) · Zbl 1208.16017 · doi:10.1090/S0894-0347-10-00662-4
[24] V. Fock, A. Goncharov, Dual Teichmüller and lamination spaces. Handbook of Teichmüller theory. Vol. I, 647-684, IRMA Lect. Math. Theor. Phys., 11, Eur. Math. Soc., Zürich, 2007 · Zbl 1162.32009
[25] Fomin, S.; Shapiro, M.; Thurston, D., Cluster algebras and triangulated surfaces, I. Cluster complexes. Acta Math., 201, 1, 83-146 (2008) · Zbl 1263.13023
[26] Fomin, S.; Thurston, D., Cluster algebras and triangulated surfaces Part II Lambda lengths, Mem. Amer. Math. Soc., 255, 1223, v+97 (2018) · Zbl 07000309
[27] Fomin, S.; Zelevinsky, A., Cluster algebras, I. Foundations. J. Amer. Math. Soc., 15, 2, 497-529 (2002) · Zbl 1021.16017 · doi:10.1090/S0894-0347-01-00385-X
[28] P. Gabriel, Finite representation type is open. Proceedings of the International Conference on Rep- resentations of Algebras (Carleton Univ., Ottawa, Ont., 1974), Paper No. 10, 23pp. Carleton Math. Lecture Notes, No. 9, Carleton Univ., Ottawa, Ont., 1974
[29] C. Geiß, D. Labardini-Fragoso, J. Schröer, Generic Caldero-Chapoton functions with coefficients and applications to surface cluster algebras, Preprint (2020), 45 pp., arXiv:2007.05483
[30] Geiß, C.; Leclerc, B.; Schröer, J., Generic bases for cluster algebras and the chamber Ansatz, J. Amer. Math. Soc., 25, 1, 21-76 (2012) · Zbl 1236.13020 · doi:10.1090/S0894-0347-2011-00715-7
[31] C. Geiß, Geometric methods in representation theory of finite-dimensional algebras. Representation theory of algebras and related topics (Mexico City, 1994), 53-63, CMS Conf. Proc., 19, Amer. Math. Soc., Providence, RI, 1996 · Zbl 0854.16009
[32] Geiß, C.; de la Peña, JA, On the deformation theory of finite-dimensional algebras, Manuscripta Math., 88, 2, 191-208 (1995) · Zbl 0851.16011 · doi:10.1007/BF02567817
[33] Gonciulea, N., Singular Loci of Varieties of Complexes, II. J. Algebra, 235, 2, 547-558 (2001) · Zbl 1086.14509 · doi:10.1006/jabr.1999.8068
[34] Haiden, F.; Katzarkov, L.; Kontsevich, M., Flat surfaces and stability structures, Publ. Math. Inst. Hautes Études Sci., 126, 247-318 (2017) · Zbl 1390.32010 · doi:10.1007/s10240-017-0095-y
[35] Hartshorne, R., Algebraic geometry, xvi+496 (1977), New York: Springer, New York · Zbl 0531.14001 · doi:10.1007/978-1-4757-3849-0
[36] Haupt, N., Euler characteristics of quiver Grassmannians and Ringel-Hall algebras of string algebras, Algebr. Represent. Theory, 15, 4, 755-793 (2012) · Zbl 1275.16016 · doi:10.1007/s10468-010-9264-0
[37] Krause, H., Maps between tree and band modules, J. Algebra, 137, 1, 186-194 (1991) · Zbl 0715.16007 · doi:10.1016/0021-8693(91)90088-P
[38] Labardini-Fragoso, D., Quivers with potentials associated to triangulated surfaces, Proc. London Math. Soc, 98, 797-839 (2009) · Zbl 1241.16012 · doi:10.1112/plms/pdn051
[39] Labardini-Fragoso, D.: Quivers with potentials associated with triangulations of Riemann surfaces. Northeastern University (2010). Ph.D. thesis · Zbl 1241.16012
[40] V. Lakshmibai, Singular loci of varieties of complexes. Commutative algebra, homological algebra and representation theory (Catania/Genoa/Rome, 1998). J. Pure Appl. Algebra 152 (2000), no. 1-3, 217-230 · Zbl 0982.14027
[41] Y. Lekili, A. Polishchuk, Derived equivalences of gentle algebras via Fukaya categories. Math. Ann. 376, 187-225 (2020). doi:10.1007/s00208-019-01894-5 · Zbl 1441.14062
[42] Muller, G., Locally acyclic cluster algebras, Adv. Math., 233, 207-247 (2013) · Zbl 1279.13032 · doi:10.1016/j.aim.2012.10.002
[43] G. Muller, \({\cal{A}}={\cal{U}}\) for locally acyclic cluster algebras. SIGMA Symmetry Integrability Geom. Methods Appl. 10 (2014), Paper 094, 8 pp · Zbl 1327.13079
[44] Musiker, G.; Schiffler, R.; Williams, L., Positivity for cluster algebras from surfaces, Adv. Math., 227, 2241-2308 (2011) · Zbl 1331.13017 · doi:10.1016/j.aim.2011.04.018
[45] Musiker, G.; Schiffler, R.; Williams, L., Bases for cluster algebras from surfaces, Compos. Math., 149, 2, 217-263 (2013) · Zbl 1263.13024 · doi:10.1112/S0010437X12000450
[46] S. Opper, P.-G. Plamondon, S. Schroll, A geometric model for the derived category of gentle algebras. Preprint (2018), 41 pp., arXiv:1801.09659v5
[47] Plamondon, P-G, Generic bases for cluster algebras from the cluster category, Int. Math. Res. Not. IMRN, 10, 2368-2420 (2013) · Zbl 1317.13055 · doi:10.1093/imrn/rns102
[48] P.-G. Plamondon, \( \tau \)-tilting finite gentle algebras are representation-finite. Pacific J. Math. Vol. 302 (2019), No. 2, 709-716. doi:10.2140/pjm.2019.302.709 · Zbl 1490.16041
[49] F. Qin, Bases for upper cluster algebras and tropical points. Journal of the European Mathematical Society, to appear · Zbl 07835492
[50] Ringel, C.M.: Tame algebras and integral quadratic forms. Lecture Notes in Mathematics, vol. 1099. Springer, Berlin (1984) · Zbl 0546.16013
[51] Schröer, J., Modules without self-extensions over gentle algebras, J. Algebra, 216, 1, 178-189 (1999) · Zbl 0994.16013 · doi:10.1006/jabr.1998.7696
[52] Shafarevich, I.: Basic algebraic geometry. 1. Varieties in projective space. Third edition. Translated from the 2007 third Russian edition. Springer, Heidelberg. xviii+310 pp. (2013) · Zbl 1273.14004
[53] Shafarevich, I.: Basic algebraic geometry. 2. Schemes and complex manifolds. Third edition. Translated from the 2007 third Russian edition by Miles Reid. Springer, Heidelberg. xiv+262 pp. (2013) · Zbl 1277.14002
[54] Strickland, E., On the conormal bundle of the determinantal variety, J. Algebra, 75, 2, 523-537 (1982) · Zbl 0493.14030 · doi:10.1016/0021-8693(82)90054-0
[55] Voigt, D., Induzierte Darstellungen in der Theorie der endlichen, algebraischen Gruppen (1977), New York: Springer, New York · Zbl 0374.14010 · doi:10.1007/BFb0086128
[56] Wald, B.; Waschbüsch, J., Tame biserial algebras, J. Algebra, 95, 2, 480-500 (1985) · Zbl 0567.16017 · doi:10.1016/0021-8693(85)90119-X
[57] Zwara, G., Degenerations for modules over representation-finite algebras, Proc. Amer. Math. Soc., 127, 1313-1322 (1999) · Zbl 0927.16008 · doi:10.1090/S0002-9939-99-04714-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.