×

Riemann–Stieltjes operators between Bergman-type spaces and \(\alpha \)-Bloch spaces. (English) Zbl 1136.47022

For \(\alpha>0\), let \(B^\alpha\) be the \(\alpha\)-Bloch class, that is, the space of all holomorphic functions \(f\) in the unit disk \(\mathbb D\) for which \(\| f\|_\alpha:=\sup_{z\in\mathbb D}(1-|z|^2)^\alpha |f '(z)|<\infty\). For positive continuous functions \(\phi\) on \([0,1[\) satisfying \[ \text{\(\frac{\phi(r)}{(1-r)^s} \downarrow 0\), respectively \(\frac{\phi(r)}{(1-r)^t} \uparrow \infty\)} \] for some \(0<s<t\), the author considers the space \(E=H(p,p,\phi)\) of holomorphic functions on \(\mathbb D\) for which \(\| f\|^p_E=\int_{\mathbb D} |f(z)|^p \frac{\phi(|z|)^p}{1-|z|}\,dA(z)<\infty\). A complete description of those functions \(g\) holomorphic on \(\mathbb D\) is given for which the integral operators \(J_gf(z)=\int_0^zf(\xi)g'(\xi)\,d\xi\) and \(I_gf(z)=\int_0^zf'(\xi)g(\xi)\,d\xi\) are bounded, respectively compact, when regarded as maps between \(E\) and \(B^\alpha\) (or vice versa).

MSC:

47B38 Linear operators on function spaces (general)
30D45 Normal functions of one complex variable, normal families
47G10 Integral operators

References:

[1] A. Aleman and J. A. Cima, “An integral operator on Hp and Hardy’s inequality,” Journal d’Analyse Mathématique, vol. 85, pp. 157-176, 2001. · Zbl 1061.30025 · doi:10.1007/BF02788078
[2] A. Aleman and A. G. Siskakis, “An integral operator on Hp,” Complex Variables, vol. 28, no. 2, pp. 149-158, 1995. · Zbl 0837.30024
[3] A. Aleman and A. G. Siskakis, “Integration operators on Bergman spaces,” Indiana University Mathematics Journal, vol. 46, no. 2, pp. 337-356, 1997. · Zbl 0951.47039 · doi:10.1512/iumj.1997.46.1373
[4] J. Arazy, S. D. Fisher, and J. Peetre, “Möbius invariant function spaces,” Journal für die reine und angewandte Mathematik, vol. 363, pp. 110-145, 1985. · Zbl 0566.30042
[5] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Florida, 1995. · Zbl 0873.47017
[6] G. H. Hardy and J. E. Littlewood, “Some properties of fractional integrals II,” Mathematische Zeitschrift, vol. 34, no. 1, pp. 403-439, 1932. · Zbl 0003.15601 · doi:10.1007/BF01180596
[7] Z. J. Hu, “Extended Cesàro operators on mixed norm spaces,” Proceedings of the American Mathematical Society, vol. 131, no. 7, pp. 2171-2179, 2003. · Zbl 1054.47023 · doi:10.1090/S0002-9939-02-06777-1
[8] K. Madigan and A. Matheson, “Compact composition operators on the Bloch space,” Transactions of the American Mathematical Society, vol. 347, no. 7, pp. 2679-2687, 1995. · Zbl 0826.47023 · doi:10.2307/2154848
[9] J. Miao, “The Cesàro operator is bounded on Hp for 0&lt;p&lt;1,” Proceedings of the American Mathematical Society, vol. 116, no. 4, pp. 1077-1079, 1992. · Zbl 0787.47029 · doi:10.2307/2159491
[10] F. Pérez-González and J. Rättyä, “Forelli-Rudin estimates, Carleson measures and F(p,q,s)-functions,” Journal of Mathematical Analysis and Applications, vol. 315, no. 2, pp. 394-414, 2006. · Zbl 1097.30040 · doi:10.1016/j.jmaa.2005.10.034
[11] C. Pommerenke, “Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation,” Commentarii Mathematici Helvetici, vol. 52, no. 4, pp. 591-602, 1977. · Zbl 0369.30012 · doi:10.1007/BF02567392
[12] W. Rudin, Function Theory in the Unit Ball of \Bbb Cn, vol. 241 of Fundamental Principles of Mathematical Science, Springer, New York, 1980. · Zbl 0495.32001
[13] J.-H. Shi and G.-B. Ren, “Boundedness of the Cesàro operator on mixed norm spaces,” Proceedings of the American Mathematical Society, vol. 126, no. 12, pp. 3553-3560, 1998. · Zbl 0905.47019 · doi:10.1090/S0002-9939-98-04514-6
[14] A. L. Shields and D. L. Williams, “Bounded projections, duality, and multipliers in spaces of analytic functions,” Transactions of the American Mathematical Society, vol. 162, pp. 287-302, 1971. · Zbl 0227.46034 · doi:10.2307/1995754
[15] A. G. Siskakis, “Composition semigroups and the Cesàro operator on Hp,” Journal of the London Mathematical Society. Second Series, vol. 36, no. 1, pp. 153-164, 1987. · Zbl 0634.47038 · doi:10.1112/jlms/s2-36.1.153
[16] A. G. Siskakis, “The Cesàro operator is bounded on H1,” Proceedings of the American Mathematical Society, vol. 110, no. 2, pp. 461-462, 1990. · Zbl 0719.47020 · doi:10.2307/2048089
[17] A. G. Siskakis and R. Zhao, “A Volterra type operator on spaces of analytic functions,” in Function Spaces (Edwardsville, IL, 1998), vol. 232 of Contemp. Math., pp. 299-311, American Mathematical Society, Rhode Island, 1999. · Zbl 0955.47029
[18] S. Stević, “The generalized Cesàro operator on Dirichlet spaces,” Studia Scientiarum Mathematicarum Hungarica, vol. 40, no. 1-2, pp. 83-94, 2003. · Zbl 1050.47029 · doi:10.1556/SScMath.40.2003.1-2.7
[19] S. Stević, “On an integral operator on the unit ball in \Bbb Cn,” Journal of Inequalities and Applications, vol. 2005, no. 1, pp. 81-88, 2005. · Zbl 1074.47013 · doi:10.1155/JIA.2005.81
[20] J. Xiao, “Cesàro-type operators on Hardy, BMOA and Bloch spaces,” Archiv der Mathematik, vol. 68, no. 5, pp. 398-406, 1997. · Zbl 0870.30026 · doi:10.1007/s000130050072
[21] J. Xiao, “Riemann-Stieltjes operators on weighted Bloch and Bergman spaces of the unit ball,” Journal of the London Mathematical Society. Second Series, vol. 70, no. 1, pp. 199-214, 2004. · Zbl 1064.47034 · doi:10.1112/S0024610704005484
[22] R. Yoneda, “Pointwise multipliers from BMOA\alpha to BMOA\beta ,” Complex Variables, vol. 49, no. 14, pp. 1045-1061, 2004. · Zbl 1084.47026 · doi:10.1080/02781070412331320448
[23] X. Zhang, J. Xiao, and Z. Hu, “The multipliers between the mixed norm spaces in \Bbb Cn,” Journal of Mathematical Analysis and Applications, vol. 311, no. 2, pp. 664-674, 2005. · Zbl 1080.32003 · doi:10.1016/j.jmaa.2005.03.010
[24] R. Zhao, “Composition operators from Bloch type spaces to Hardy and Besov spaces,” Journal of Mathematical Analysis and Applications, vol. 233, no. 2, pp. 749-766, 1999. · Zbl 0930.30031 · doi:10.1006/jmaa.1999.6341
[25] K. H. Zhu, Operator Theory in Function Spaces, vol. 139 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, 1990. · Zbl 0706.47019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.