×

Eigenfunction expansion method for multiple solutions of fourth-order ordinary differential equations with cubic polynomial nonlinearity. (English) Zbl 1402.65073

The authors consider numerically solutions of the following nonlinear boundary value problem \[ \begin{aligned} &y^{(4)}+\alpha y'' +\beta y =f(y) +g(y),\quad x\in (0,1) \\ & y(0) =y(1)=y'' (0) =y'' (1)=0.\end{aligned} \] The Eigenvalue Expansion Method is used to obtain multiple solutions.

MSC:

65L10 Numerical solution of boundary value problems involving ordinary differential equations
34L10 Eigenfunctions, eigenfunction expansions, completeness of eigenfunctions of ordinary differential operators
34B15 Nonlinear boundary value problems for ordinary differential equations

Software:

PHoM; PHCpack; HOM4PS; Bertini

References:

[1] E. L. A LLGOWER, D. J. B ATES, A. J. S OMMESE,AND C. W. W AMPLER, Solution of polynomial systems derived from differential equations, Computing, 76 (2006), pp. 1-10. · Zbl 1086.65075
[2] Z. B AI AND H. W ANG, On positive solutions of some nonlinear fourth-order beam equations, J. Math. Anal. Appl., 270 (2002), pp. 357-368. · Zbl 1006.34023
[3] D. J. B ATES, J. D. H AUENSTEIN, A. J. S OMMESE,AND C. W. W AMPLER, Bertini: Software for numerical algebraic geometry, Software, 2006, available at http://bertini.nd.edu.
[4] G. B ONANNO AND B. D I B ELLA, A boundary value problem for fourth-order elastic beam equations, J. Math. Anal. Appl., 343 (2008), pp. 1166-1176. · Zbl 1145.34005
[5] , Infinitely many solutions for a fourth-order elastic beam equation, NoDEA Nonlinear Differential Equations Appl., 18 (2011), pp. 357-368. · Zbl 1222.34023
[6] T. D. B UI AND R. A. U SMANI, Solving boundary value problems in plate deflection theory, Simulation, 37 (1981), pp. 195-206. · Zbl 0485.73070
[7] C. C HEN AND Z. X IE, Search extension method for multiple solutions of a nonlinear problem, Comput. Math. Appl., 47 (2004), pp. 327-343. · Zbl 1168.35338
[8] , Analysis of search-extension method for finding multiple solutions of nonlinear problem, Sci. China Ser. A, 51 (2008), pp. 42-54. · Zbl 1142.65091
[9] L. C OLLATZ, Differential Equations: An Introduction with Applications, Wiley, 1986. ETNA Kent State University and Johann Radon Institute (RICAM) MULTIPLE SOLUTIONS OF FOURTH-ORDER ODE’S WITH CUBIC NONLINEARITY 95 T ABLE 6.3 The rate of convergence for nonlinear fourth-order BVP(6.2). N H 1-error L 2-error 4 0.0129 1.5984e-04 5 0.0063 3.8536e-05 6 0.0063 3.8536e-05 7 0.0035 1.2010e-05 8 0.0035 1.2010e-05 9 0.0022 4.6684e-06 10 0.0022 4.6684e-06 Conv. Ord 1.9112 3.8177 −2 10 −3 10 H 1−err 1 H−ord 2 L−err Error L 2−ord −4 10 −5 10 10 1 Number of unknowns F IG. 6.5. Convergence rate for problem (6.2).
[10] M.D. R. G ROSSINHO, L. S ANCHEZ,AND S. A. T ERSIAN, On the solvability of a boundary value problem for a fourth-order ordinary differential equation, Appl. Math. Lett., 18 (2005), pp. 439-444. · Zbl 1087.34508
[11] S. R. G UNAKALA, D. C OMISSIONG, K. J ORDAN,AND A. S ANKAR, A finite element solution of the beam equation via matlab, Int. J. Appl. Sci. Tech., 2 (2012), pp. 80-88.
[12] T. G UNJI, S. K IM, M. K OJIMA, A. T AKEDA, K. F UJISAWA,AND T. M IZUTANI, PHoM—a polyhedral homotopy continuation method for polynomial systems, Computing, 73 (2004), pp. 57-77. · Zbl 1061.65041
[13] T. G YULOV AND S. T ERSIAN, Existence of trivial and nontrivial solutions of fourth-order ordinary differential equation, C. R. Acad. Bulgare Sci., 57 (2004), pp. 23-28. · Zbl 1065.34016
[14] G. H AN AND Z. X U, Multiple solutions of some nonlinear fourth-order beam equations, Nonlinear Anal., 68 (2008), pp. 3646-3656. · Zbl 1145.34008
[15] T. L. L EE, T. Y. L I,AND C. H. T SAI, HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method, Computing, 83 (2008), pp. 109-133. · Zbl 1167.65366
[16] T.-Y. L I, Solving polynomial systems by polyhedral homotopies, Taiwanese J. Math., 3 (1999), pp. 251-279. · Zbl 0945.65052
[17] S. L IANG AND D. J. J EFFREY, An efficient analytical approach for solving fourth order boundary value problems, Comput. Phys. Comm., 180 (2009), pp. 2034-2040. · Zbl 1197.65109
[18] X.-L. L IU AND W.-T. L I, Existence and multiplicity of solutions for fourth-order boundary value problems with three parameters, Math. Comput. Modelling, 46 (2007), pp. 525-534. · Zbl 1135.34007
[19] S. T. M OHYUD-D IN AND M. A. N OOR, Homotopy perturbation method for solving fourth-order boundary value problems, Math. Probl. Eng., (2007), Art. ID 98602, 15 pages. · Zbl 1144.65311
[20] A. M ORGAN, Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems, SIAM, Philadelphia, 2009. · Zbl 1170.65316
[21] C. P ANG, W. D ONG,AND Z. W EI, Multiple solutions for fourth-order boundary value problem, J. Math. Anal. Appl., 314 (2006), pp. 464-476. · Zbl 1094.34012
[22] M. R UYUN, Z. J IHUI,AND F. S HENGMAO, The method of lower and upper solutions for fourth-order two-point boundary value problems, J. Math. Anal. Appl., 215 (1997), pp. 415-422. · Zbl 0892.34009
[23] R. C. S MITH, G. A. B OGAR, K. L. B OWERS,AND J. L UND, The sinc-Galerkin method for fourth-order differential equations, SIAM J. Numer. Anal., 28 (1991), pp. 760-788. ETNA Kent State University and Johann Radon Institute (RICAM) 96 A. MAHMOUD, B. YU, AND X. ZHANG · Zbl 0735.65058
[24] A. J. S OMMESE AND C. W. W AMPLER, The Numerical Solution of Systems of Polynomials Arising in Engineering and Science, World Scientific, Hackensack, 2005. · Zbl 1091.65049
[25] V. T HOMÉE, Galerkin Finite Element Methods for Parabolic Problems, Springer, Berlin, 1997. · Zbl 0884.65097
[26] , Finite difference methods for computing eigenvalues of fourth order boundary value problems, Internat. J. Math. Math. Sci., 9 (1986), pp. 137-143. · Zbl 0599.65057
[27] J. V ERSCHELDE, Algorithm 795: Phcpack: A general-purpose solver for polynomial systems by homotopy continuation, ACM Trans. Math. Software, 25 (1999), pp. 251-276. · Zbl 0961.65047
[28] A.-M. W AZWAZ, The numerical solution of special fourth-order boundary value problems by the modified decomposition method, Int. J. Comput. Math., 79 (2002), pp. 345-356. · Zbl 0995.65082
[29] Y. S. Y ANG, Fourth-order two-point boundary value problems, Proc. Amer. Math. Soc., 104 (1988), pp. 175- 180. · Zbl 0671.34016
[30] X. Z HANG, B. Y U,AND J. Z HANG, Proof of a conjecture on a discretized elliptic equation with cubic nonlinearity, Sci. China Math., 56 (2013), pp. 1279-1286. · Zbl 1276.65087
[31] X. Z HANG, J. Z HANG,AND B. Y U, Eigenfunction expansion method for multiple solutions of semilinear elliptic equations with polynomial nonlinearity, SIAM J. Numer. Anal., 51 (2013), pp. 2680-2699. · Zbl 1305.65174
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.