×

Sinc-Galerkin method for solving biharmonic problems. (English) Zbl 1338.65253

Summary: There are many techniques available to numerically solve the biharmonic equation. In this paper we show that the sinc-Galerkin method is a very effective tool in numerically solving this equation. Hermite interpolation is used to treat the nonhomogeneous boundary conditions. Our method is tested on examples and comparisons with other methods are made. It is shown that the sinc-Galerkin method yields good results even when singularities occur at the boundaries.

MSC:

65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
35J40 Boundary value problems for higher-order elliptic equations
Full Text: DOI

References:

[1] Meleshko, V.; van Heijst, G., Mixing of a viscous fluid in a rectangular hollow, Mat. Metody Fiz.-Mekh. Polya, 49, 43-52 (2006) · Zbl 1126.76382
[2] Timoshenko, S., A Course in the Theory of Elasticity (1972), Naukova Dumka: Naukova Dumka Kiev
[3] Lurie, S.; Vasiliev, V., The Biharmonic Problem of the Theory of Elasticity (1995), Gordon and Breach: Gordon and Breach London · Zbl 0924.73007
[4] Prokopov, V., On the papkovich relation of generalized orthogonality for a rectangular plate, Prikl. Mat. Mekh., 29, 351-355 (1964)
[5] Miklin, S., Integral Equations (1964), Mac-Millan: Mac-Millan New York
[6] Pozrikidis, C., Boundary Integral and Singularity Methods for Linearized Viscous Flow (1992), Cambridge University Press: Cambridge University Press UK · Zbl 0772.76005
[7] Bloor, M.; Michael, J., Method or efficient shape parameterization of fluid membranes and vehicles, Phys. Rev. E, 61, 4218-4229 (2000)
[8] Sevant, N.; Bloor, M.; Wilson, M., Aerodynamic design of a flying wing using response surface methodology, J. Comput. Appl. Math., 37, 562-569 (2000)
[9] Ehrlich, L. W., Solving the biharmonic equation in a square: a direct versus a semidirect method, ACM, 16, 711-714 (1973) · Zbl 0269.65054
[10] Guo, C.; Zhilin, L.; Lin, P., A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible stokes flow, Adv. Comput. Math., 29, 113-133 (2008) · Zbl 1241.76324
[11] Buzbee, L.; Dorr, F., The direct solution of the biharmonic equation on rectangular regions and the poisson equation on irregular regions, SIAM J. Numer. Anal., 11, 753-763 (1974) · Zbl 0294.65059
[12] Smith, J., The coupled equation approach to the numerical solution of the biharmonic equation by finite differences, SIAM J. Numer. Anal., 7, 104-111 (1970) · Zbl 0223.65078
[13] Lamichhane, B., A mixed finite element method for the biharmonic problem using biorthogonal or quasi-biorthogonal systems, J. Sci. Comput., 46, 379-396 (2011) · Zbl 1270.65068
[14] Eymard, R., Finite volume schemes for the biharmonic problem on general meshes, Math. Comput., 280, 2019-2048 (2012) · Zbl 1271.65135
[15] Youngmok, J., An indirect boundary integral equation method for the biharmonic equation, SIAM J. Numer. Anal., 31, 461-476 (1994) · Zbl 0805.65109
[16] Mayo, A.; Greenbaum, A., Fast parallel iterative solution of poisson’s and the biharmonic equations on irregular regions, SIAM J. Sci. Comput., 13, 101-118 (1992) · Zbl 0752.65080
[17] Chekurin, F.; Postolaki, L., A variational method for the solution of biharmonic problems for a rectangular domain, J. Comput. Appl. Math., 160, 386-399 (2009)
[18] Thatcher, R., A least squares method for solving biharmonic problems, SIAM J. Numer. Anal., 38, 1523-1539 (2000) · Zbl 0987.65120
[19] Avudainayagam, A., A domain decomposition method for biharmonic equation, Comput. Math. Appl., 40, 865-876 (2000) · Zbl 0963.65119
[20] Hussain, A.; Mohyud-Din, S.; Yildirim, A., Solution of biharmonic equations using homotopy analysis method, Stud. Nonlinear Sci., 2, 26-30 (2011)
[21] Chan, R.; Delillo, T.; Horn, M., The numerical solution of biharmonic equation by conformal mapping, SIAM J. Sci Comput., 18, 1571-1582 (1997) · Zbl 0888.30006
[22] Ali, A.; Raslan, K., Variational iteration method for solving biharmonic equations, Phys. Lett. A, 370, 441-448 (2007) · Zbl 1209.65135
[23] Morandi, C.; Zaglia, M., Mathematical programming techniques to solve biharmonic problems by a recursive projection algorithm, J. Comput. Appl. Math., 32, 191-201 (1990) · Zbl 0721.65053
[24] Shen, J., Efficient spectral-Galerkin method I. Direct solvers of second-and fourth-order equations using Legendre polynomials, SIAM J. Sci. Comput., 15, 1489-1505 (1994) · Zbl 0811.65097
[25] Bialecki, B.; Karageorghis, A., A Legendre spectral Galerkin method for the biharmonic Dirichlet problem, SIAM J. Sci. Comput., 22, 1549-1569 (2000) · Zbl 0986.65115
[26] See, M. H.; Tran-Cong, T., A spectral collocation technique based on integrated Chebyshev polynomials for biharmonic problems in irregular domains, Appl. Math. Model., 33, 284-299 (2009) · Zbl 1167.65454
[27] Bjorstad, P.; Tjostheim, B., Efficient algorithms for solving a fourth-order equation with the spectral-Galerkin method, SIAM J. Sci. Comput., 18, 621-632 (1997) · Zbl 0939.65129
[28] Revenko, V., Development of the spectral Sturm-Liouville method for the solution of a boundary-value problem for the biharmonic equation, Nonlinear Oscillations, 6, 361-370 (2003)
[29] Wenting, S.; Xionghua, W.; Chen, S., Chebyshev tau meshless method based on the integration-differentiation for biharmonic-type equations on irregular domain, Eng. Anal. Bound. Elem., 36, 1787 (2012), 179 · Zbl 1352.65575
[30] Karachik, V.; Antropova, N., Polynomial solutions of the Dirichlet problem for the biharmonic equation in the ball, J. Comput. Appl. Math., 49, 251-256 (2013) · Zbl 1276.35070
[31] Zeb, A.; Ingham, D.; Lesnic, D., The method of fundamental solutions for a biharmonic inverse boundary determination problem, J. Comput. Appl. Math., 42, 371-379 (2008) · Zbl 1163.65078
[32] Li, Z.; Lee, M.; Chiang, J.; Liu, Y., The trefftz method using fundamental solutions for biharmonic equations, J. Comput. Appl. Math., 235, 4350-4367 (2011) · Zbl 1222.65131
[33] Shi, Z.; Yong-yan, C., A spectral collocation method based on haar wavelets for poisson equations and biharmonic equations, Math. Comput. Model., 54, 2858-2868 (2011) · Zbl 1235.65160
[34] Shi, Z.; Yong-yan, C.; Qing-jiang, C., Solving 2d and 3d poisson equations and biharmonic equations by the haar wavelet method, Appl. Math. Model., 36, 5143-5161 (2012) · Zbl 1254.65138
[35] Bialecki, B., Sinc-collocation methods for two-point boundary value problems, IMA J. Numer. Anal., 11, 357-375 (1991) · Zbl 0735.65052
[36] Mohsen, A.; El-Gamel, M., On the Galerkin and collocation methods for two-point boundary value problems using sinc bases, Comput. Math. Appl., 56, 930-941 (2008) · Zbl 1155.65365
[37] Bellomo, N.; Ridolfi, L., Solution of nonlinear initial -boundary value problems by sinc-collocation-interpolation methods, Comput. Math. Appl., 29, 15-28 (1995) · Zbl 0822.65075
[38] Ralph, C.; Bowers, K., The sinc-Galerkin method for fourth-order differential equations, SIAM J. Numer. Anal., 28, 760-788 (1991) · Zbl 0735.65058
[39] El-Gamel, M.; Cannon, J.; Zayed, A., Sinc-Galerkin method for solving linear sixth order boundary-value problems, Math. Comput., 73, 1325-1343 (2004) · Zbl 1054.65085
[40] El-Gamel, M.; Behiry, S.; Hashish, H., Numerical method for the solution of special nonlinear fourth-order boundary value problems, Appl. Math. Comput., 145, 717-734 (2003) · Zbl 1033.65065
[41] Bowers, K.; Carlson, T.; Lund, J., Advection-diffusion equation: temporal sinc methods, Numer. Methds Part. Differ. Equ., 11, 399-422 (1995) · Zbl 0837.65106
[42] McArthur, K.; Bowers, K.; Lund, J., The sinc method in multiple space dimensions: model problems, Numer. Math., 56, 789-816 (1990) · Zbl 0697.65079
[43] Eggert, N.; Jarratt, M.; Lund, J., Sinc function computation of the eigenvalues of Sturm-Liouville problems, J. Comput. Appl. Math., 69, 209-229 (1987) · Zbl 0618.65073
[44] Yin, G., Sinc-collocation method with orthogonalization for singular problem-like poisson, Math. comput., 62, 21-40 (1994) · Zbl 0796.65121
[45] Mohsen, A.; El-Gamel, M., A sinc-collocation method for the linear fredholm integro-differential equations, Z. Angew. Math. Phys., 58, 380-390 (2007) · Zbl 1116.65131
[46] Mohsen, A.; El-Gamel, M., On the numerical solution of linear and nonlinear Volterra integral and integro-differential equations, Appl. Math. Comput., 217, 3330-3337 (2010) · Zbl 1204.65158
[47] El-Gamel, M., Sinc-collocation method for solving linear and nonlinear system of second-order boundary value problems, Appl. Math., 3, 1627-1633 (2012)
[48] El-Gamel, M., Numerical solution of Troesch’s problem by sinc-collocation method, Appl. Math., 4, 707-712 (2013)
[49] Stenger, F.; Cook, T.; Kirby, R., Sinc solution of biharmonic problems, Can. Appl. Math. Q., 12, 371-414 (2004) · Zbl 1096.65117
[51] El-Gamel, M.; El-Hady, M. A., Two very accurate and efficient methods for computing eigenvalues of Sturm-Liouville problems, Appl. Math. Model., 37, 5039-5046 (2013) · Zbl 1426.65108
[52] Lund, J.; Bowers, K., Sinc Methods for Quadrature and Differential Equations (1992), SIAM: SIAM Philadelphia, PA · Zbl 0753.65081
[53] Stenger, F., Numerical Methods Based on Sinc and Analytic Functions (1993), Springer: Springer New York · Zbl 0803.65141
[54] Grenander, V.; Szego, G., Toeplitz Forms and Their Applications (1985), Chelsea Publishing Co.: Chelsea Publishing Co. Orlando
[56] Neudecker, H., A note on Kronecker matrix products and matrix equation systems, SIAM J. Appl. Math., 17, 603-606 (1969) · Zbl 0185.08204
[57] Shen, J., Efficient spectral-Galerkin method. I. Direct solvers of second-and fourth-order equations using Legendre polynomials, SIAM J. Sci. Comput., 15, 1489-1505 (1994) · Zbl 0811.65097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.