×

Numerical methods for nonlinear fourth-order boundary value problems with applications. (English) Zbl 1131.65064

Summary: We present efficient numerical algorithms for the approximate solution of nonlinear fourth-order boundary value problems. The first algorithm deals with the sinc-Galerkin method (SGM). The sinc basis functions prove to handle well singularities in the problem. The resulting SGM discrete system is carefully developed. The second method, the Adomian decomposition method (ADM), gives the solution in the form of a series solution.
A modified form of the ADM based on the use of the Laplace transform is also presented. We refer to this method as the Laplace Adomian decomposition technique (LADT). The proposed LADT can make the Adomian series solution convergent in the Laplace domain, when the ADM series solution diverges in the space domain. A number of examples are considered to investigate the reliability and efficiency of each method. Numerical results show that the sinc-Galerkin method is more reliable and more accurate.

MSC:

65L10 Numerical solution of boundary value problems involving ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
Full Text: DOI

References:

[1] DOI: 10.1090/S0025-5718-1978-0483496-5 · doi:10.1090/S0025-5718-1978-0483496-5
[2] DOI: 10.1002/mma.230 · Zbl 0981.35034 · doi:10.1002/mma.230
[3] Chandrasekhar S., Hydrodynamic and Hydromagnetic Stability (1981)
[4] DOI: 10.1016/0377-0427(93)90088-S · Zbl 0780.65046 · doi:10.1016/0377-0427(93)90088-S
[5] DOI: 10.1016/j.apm.2005.11.004 · Zbl 1141.65369 · doi:10.1016/j.apm.2005.11.004
[6] DOI: 10.1016/S0377-0427(01)00497-6 · Zbl 1006.65082 · doi:10.1016/S0377-0427(01)00497-6
[7] DOI: 10.1016/j.aml.2003.05.016 · Zbl 1074.34019 · doi:10.1016/j.aml.2003.05.016
[8] DOI: 10.1016/j.jmaa.2005.04.008 · Zbl 1094.34012 · doi:10.1016/j.jmaa.2005.04.008
[9] Agarwal R. P., Boundary Value Problems for High Ordinary Differential Equations (1986)
[10] DOI: 10.1137/0728041 · Zbl 0735.65058 · doi:10.1137/0728041
[11] Lund J., Sinc Methods for Quadrature and Differential Equations (1992) · Zbl 0753.65081
[12] Stenger F., Numerical Methods Based on Sinc and Analytic Functions (1993) · Zbl 0803.65141
[13] DOI: 10.1016/S0898-1221(00)00187-5 · Zbl 0959.65090 · doi:10.1016/S0898-1221(00)00187-5
[14] DOI: 10.1108/eb005812 · Zbl 0697.65051 · doi:10.1108/eb005812
[15] DOI: 10.1016/0895-7177(93)90233-O · Zbl 0805.65057 · doi:10.1016/0895-7177(93)90233-O
[16] DOI: 10.1016/S0096-3003(97)10127-8 · Zbl 0943.65084 · doi:10.1016/S0096-3003(97)10127-8
[17] DOI: 10.1016/S0020-7462(98)00048-1 · Zbl 1342.34005 · doi:10.1016/S0020-7462(98)00048-1
[18] DOI: 10.1016/S0096-3003(03)00269-8 · Zbl 1033.65065 · doi:10.1016/S0096-3003(03)00269-8
[19] DOI: 10.1016/0022-247X(88)90170-9 · Zbl 0671.34053 · doi:10.1016/0022-247X(88)90170-9
[20] Adomian G., Solving Frontier Problems of Physics: The Decomposition Method (1994) · Zbl 0802.65122
[21] DOI: 10.1016/S0096-3003(02)00656-2 · Zbl 1032.65084 · doi:10.1016/S0096-3003(02)00656-2
[22] DOI: 10.1080/00207160211928 · Zbl 0995.65082 · doi:10.1080/00207160211928
[23] DOI: 10.1016/0771-050X(82)90035-3 · Zbl 0503.73061 · doi:10.1016/0771-050X(82)90035-3
[24] Rashidinia J., Applied Mathematics and Computation 171 pp 1296– · Zbl 1094.65076 · doi:10.1016/j.amc.2005.01.117
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.