×

A new form of governing equations of fluids arising from Hamilton’s principle. (English) Zbl 1210.76009

Summary: A new form of governing equation is derived from Hamilton’s principle of least action for a constrained Lagrangian, depending on conserved quantities and their derivatives with respect to the time-space. This form yields conservation laws both for the non-dispersive cases (Lagrangian depends only on conserved quantities) and the dispersive cases (Lagrangian depends also on their derivatives). For the non-dispersive cases the set of conservation laws allows to rewrite the governing equations in the symmetric form of Godunov-Friedrichs-Lax. The linear stability of equilibrium states for potential motions is also studied. In particular, the dispersion relation is obtained in terms of Hermitian matrices both for non-dispersive and dispersive cases. Some new results are extended to the two-fluid non-dispersive case.

MSC:

76A02 Foundations of fluid mechanics
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology

References:

[1] L.I. Sedov, Mathematical methods for constructing new models of continuum media, Uspekhi Mat. Nauk. 20 (1965) 121-180 (in Russian); L.I. Sedov, Mathematical methods for constructing new models of continuum media, Uspekhi Mat. Nauk. 20 (1965) 121-180 (in Russian) · Zbl 0151.37003
[2] J. Serrin, Mathematical principles of classical fluid mechanics, Encyclopedia of Physics VIII/1, Springer, Berlin, 1959, pp. 125-263; J. Serrin, Mathematical principles of classical fluid mechanics, Encyclopedia of Physics VIII/1, Springer, Berlin, 1959, pp. 125-263
[3] V.L. Berdichevsky, Variational Principles of Continuum Mechanics, Nauka, Moscow, 1983 (in Russian); V.L. Berdichevsky, Variational Principles of Continuum Mechanics, Nauka, Moscow, 1983 (in Russian) · Zbl 1189.49002
[4] Godunov, S. K., An interesting class of quasilinear systems, Sov. Math. Dokl., 2, 947-949 (1961) · Zbl 0125.06002
[5] Friedrichs, K. O.; Lax, P. D., Systems of conservation laws with a convex extension, Proc. Nat. Acad. Sci. USA, 68, 1686-1688 (1971) · Zbl 0229.35061
[6] P. Casal, H. Gouin, Equations of motions of thermocapillary fluids, C.R. Acad. Sci. Paris 306 (II) (1988) 99-104; P. Casal, H. Gouin, Equations of motions of thermocapillary fluids, C.R. Acad. Sci. Paris 306 (II) (1988) 99-104 · Zbl 0637.76108
[7] Slemrod, M., Dynamic phase transitions in a van der Waals fluid, J. Differential Equations, 52, 1-23 (1984) · Zbl 0487.76006
[8] van Wijngaarden, L., On the equations of motions for mixture of liquid and gas bubbles, J. Fluid Mech., 33, 465-474 (1972) · Zbl 0187.52202
[9] Bedford, A.; Drumheller, D. S., Theories of immiscible and structured mixtures, Int. J. Engng. Sci., 21, 863-1018 (1983) · Zbl 0534.76105
[10] Gavrilyuk, S. L.; Shugrin, S. M., Media with equations of state that depend on derivatives, J. Appl. Mech. Techn. Phys., 37, 179-189 (1996) · Zbl 1031.76501
[11] S. K. Godunov, E.I. Romensky, Thermodynamics, conservation laws and symmetric forms of differential equations in mechanics of continuous media, in: M. Hafez, K. Oshima (Eds.), Computational Fluid Dynamics Review, Willey, New York, 1995, pp. 19-30; S. K. Godunov, E.I. Romensky, Thermodynamics, conservation laws and symmetric forms of differential equations in mechanics of continuous media, in: M. Hafez, K. Oshima (Eds.), Computational Fluid Dynamics Review, Willey, New York, 1995, pp. 19-30 · Zbl 0875.73025
[12] G. Boillat, Non-linear hyperbolic fields and waves, in: T. Ruggeri (Ed.), Recent Mathematical Methods in Nonlinear Wave Propagation, Springer, Berlin, 1996, pp. 1-47; G. Boillat, Non-linear hyperbolic fields and waves, in: T. Ruggeri (Ed.), Recent Mathematical Methods in Nonlinear Wave Propagation, Springer, Berlin, 1996, pp. 1-47 · Zbl 0877.35080
[13] L.V. Ovsyannikov, Lectures on the Gas Dynamics Foundations, Nauka, Moscow, 1981 (in Russian); L.V. Ovsyannikov, Lectures on the Gas Dynamics Foundations, Nauka, Moscow, 1981 (in Russian) · Zbl 0539.76079
[14] D. Serre, Systèmes de Lois de Conservation I, II, Diderot Editeur, Arts et Sciences, Paris, 1996; D. Serre, Systèmes de Lois de Conservation I, II, Diderot Editeur, Arts et Sciences, Paris, 1996 · Zbl 0930.35002
[15] S.L. Gavrilyuk, H. Gouin, Yu.V. Perepechko, A variational principle for two-fluid models, C.R. Acad. Sci. Paris 324 (IIb) (1997) 483-490; S.L. Gavrilyuk, H. Gouin, Yu.V. Perepechko, A variational principle for two-fluid models, C.R. Acad. Sci. Paris 324 (IIb) (1997) 483-490 · Zbl 0877.76057
[16] Gavrilyuk, S. L.; Gouin, H.; Perepechko, Yu. V., Hyperbolic models of two-fluid mixtures, Meccanica, 33, 161-175 (1998) · Zbl 0923.76335
[17] Gouin, H.; Gavrilyuk, S. L., Hamilton’s principle and Rankine-Hugoniot conditions for general motions of mixtures, Meccanica, 33 (1998)
[18] Geurst, J. A., Virtual mass in two-phase bubbly flow, Physica A, 129, 233-261 (1985) · Zbl 0591.76169
[19] Geurst, J. A., Variational principles and two-fluid hydrodynamics of bubbly liquid/gas mixtures, Physica A, 135, 455-486 (1986)
[20] Gouin, H., Variational theory of mixtures in continuum mechanics, Eur. J. Mech. B/Fluids, 9, 469-491 (1990) · Zbl 0704.76001
[21] S.L. Gavrilyuk, Yu.V. Perepechko, Variational approach for the construction of hyperbolic two-fluid models, Zh. Prikl. Mekh. Tekh. Fiz. 39 (5) (1998) 39-54 (in Russian); S.L. Gavrilyuk, Yu.V. Perepechko, Variational approach for the construction of hyperbolic two-fluid models, Zh. Prikl. Mekh. Tekh. Fiz. 39 (5) (1998) 39-54 (in Russian) · Zbl 0930.76006
[22] T.C. Haley, R.T. Lahey Jr., D.A. Drew, A characteristic analysis of void waves using two-fluid models, Proceedings of the International Conference on Multiphase Flows’91 - Tsukuba, 24-27 September, Tsukuba, Japan, 1991, pp. 161-164; T.C. Haley, R.T. Lahey Jr., D.A. Drew, A characteristic analysis of void waves using two-fluid models, Proceedings of the International Conference on Multiphase Flows’91 - Tsukuba, 24-27 September, Tsukuba, Japan, 1991, pp. 161-164
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.