×

Mixture of fluids involving entropy gradients and acceleration waves in interfacial layers. (English) Zbl 1069.76054

Summary: Through an Hamiltonian action we write down the system of equations of motions for a mixture of thermocapillary fluids under the assumption that the internal energy is a function not only of the gradient of densities but also of the gradient of entropies of each component. A Lagrangian associated with the kinetic energy and the internal energy allows to obtain the equations of momentum for each component and for the barycentric motion of the mixture. We obtain also the balance of energy, and we prove that the equations are compatible with the second law of thermodynamics. Though the system is of parabolic type, we prove that there exist two tangential acceleration waves that characterize the interfacial motion. The dependence of the internal energy on the entropy gradients is mandatory for the existence of this kind of waves. The differential system is nonlinear but the waves propagate without distortion due to the fact that they are linearly degenerate (exceptional waves).

MSC:

76T30 Three or more component flows
80A17 Thermodynamics of continua

References:

[1] Levitch, V., Physicochemical Hydrodynamics (1962), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ
[2] Ono, S.; Kondo, S., Molecular theory of surface tension in liquid, (Flügge, S., Structure of Liquids. Structure of Liquids, Encyclopedia of Physics, vol. X (1960), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0107.23501
[3] Cahn, J. W.; Hilliard, J. E., Free energy of a non-uniform system III, J. Chem. Phys., 31, 688-699 (1959)
[4] Rowlinson, J. S.; Widom, B., Molecular Theory of Capillarity (1984), Clarendon Press: Clarendon Press Oxford
[5] Hohenberg, P. C.; Halperin, B. I., Theory of dynamic critical phenomena, Rev. Modern Phys., 49, 435-480 (1977)
[6] Gouin, H., Dynamics effects in gradient theory for fluid mixtures, (IMA Vol. Math. Appl., vol. 52 (1993)), 111-122 · Zbl 0788.76082
[7] Rocard, Y., Thermodynamique (1952), Masson: Masson Paris · Zbl 0049.26005
[8] Bruhat, G., Cours de Physique Générale, Thermodynamique (1968), Masson: Masson Paris
[9] Bongiorno, V.; Scriven, L. E.; Davis, H. T., Molecular theory of fluid interfaces, J. Coll. Int. Sci., 57, 462-475 (1976)
[10] van der Waals, J. D., Thermodynamique de la capillarité dans l’hypothèse d’une variation continue de densité, Arch. Néerlandaises, 28, 121-209 (1894-1895) · JFM 25.1585.01
[11] Korteweg, J., Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires, Arch. Néerlandaises, 2, 6, 1-24 (1901) · JFM 32.0756.02
[12] Gurtin, E., Thermodynamics and the possibility of spatial interaction in elastic materials, Arch. Rational Mech. Anal., 19, 339-352 (1965) · Zbl 0146.21106
[13] Eglit, M. E., A generalization of the model of an ideal compressible fluid, J. Appl. Math. Mech., 29, 351-354 (1965)
[14] Dunn, J. E.; Serrin, J., On the thermomechanics of interstitial working, Arch. Rational Mech. Anal., 88, 95-133 (1985) · Zbl 0582.73004
[15] Casal, P.; Gouin, H., Connection between the energy equation and the motion equation in Korteweg’s theory of capillarity, C. R. Acad. Sci. Paris, Sér. II, 300, 231-234 (1985) · Zbl 0581.76089
[16] Domb, C., The Critical Point (1996), Taylor and Francis: Taylor and Francis London
[17] Slemrod, M., Admissibility criteria for propagating phase boundaries in a van der Waals fluid, Arch. Rational Mech. Anal., 81, 301-315 (1983) · Zbl 0505.76082
[18] Truskinovsky, L., Dynamics of non-equilibrium phase boundaries in a heat conducting non-linearly elastic medium, P.M.M., 51, 777-784 (1987) · Zbl 0679.73059
[19] Casal, P.; Gouin, H., Equations of motions of thermocapillary fluids, C. R. Acad. Sci. Paris, Sér. II, 306, 99-104 (1988) · Zbl 0637.76108
[20] Gouin, H., Adiabatic waves along interfacial layers near the critical point, C. R. Mecanique, 332, 285-292 (2004) · Zbl 1386.76182
[21] Germain, P., La méthode des puissances virtuelles en mécanique des milieux continus, J. Mécanique, 12, 235-275 (1973) · Zbl 0261.73003
[22] Gouin, H.; Delhaye, J. M., Material waves of a fluid in the vicinity of the critical point, (Morioka, S. S.; Wijngaarden, L., Symposium on Waves in Liquid/Gas and Liquid/Vapor Two-Phase Systems (1995), Kluwer Academic: Kluwer Academic Netherlands)
[23] Boillat, G., Non linear hyperbolic fields and waves, (Ruggeri, T., Recent Mathematical Methods in Nonlinear Wave Propagation. Recent Mathematical Methods in Nonlinear Wave Propagation, Lecture Notes in Math., vol. 1640 (1996), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0441.76100
[24] Gavrilyuk, S. L.; Gouin, H.; Perepechko, Yu. V., Hyperbolic models of homogeneous two-fluid mixtures, Meccanica, 33, 161-175 (1998) · Zbl 0923.76335
[25] Lin, C. C., A new variational principle for isoenergetic flows, Quart. Appl. Math., 9, 421-423 (1952) · Zbl 0046.18301
[26] Herivel, J. W., The derivation of the equations of motion of an ideal fluid by Hamilton’s principle, Proc. Cambridge Philos. Soc., 51, 344-349 (1955) · Zbl 0068.18802
[27] Serrin, J., Mathematical principles of classical fluid mechanics, (Flügge, Encyclopedia of Physics, VIII/1 (1960), Springer-Verlag: Springer-Verlag Berlin)
[28] Berdichevsky, V. L., Construction of models of continuous media by means of the variational principle, J. Appl. Math. Mech., 30, 510-530 (1966) · Zbl 0189.25103
[29] Gouin, H., Variational theory of mixtures in continuum mechanics, Eur. J. Mech. B Fluids, 9, 469-471 (1990) · Zbl 0704.76001
[30] Gouin, H., Thermodynamic form of the equation of motion for perfect fluids of grade \(n\), C. R. Acad. Sci. Paris, Sér. II, 305, 833-838 (1987) · Zbl 0621.76003
[31] Gouin, H., Noether theorem in fluid mechanics, Mech. Res. Comm., 3, 151-157 (1976) · Zbl 0366.76049
[32] Müller, I.; Ruggeri, T., Rational Extended Thermodynamics (1998), Springer-Verlag: Springer-Verlag New York · Zbl 0895.00005
[33] Bedford, A.; Drumheller, D. S., Recent advances. Theories of immiscible and structured mixtures, Int. J. Engrg. Sci., 21, 863-960 (1983) · Zbl 0534.76105
[34] Müller, I., Thermodynamics, Interaction of Mechanics and Mathematics Series (1985), Pitman: Pitman London · Zbl 0637.73002
[35] Geurst, J. A., Virtual mass in two-phase bubbly flow, Physica A, 129, 233-261 (1985) · Zbl 0591.76169
[36] Geurst, J. A., Variational principles and two-fluid hydrodynamics of bubbly liquid/gas mixtures, Physica A, 135, 455-486 (1986)
[37] Gavrilyuk, S. L.; Gouin, H.; Perepechko, Yu. V., A variational principle for two-fluid models, C. R. Acad. Sci. Paris, Sér. II, 324, 483-490 (1997) · Zbl 0877.76057
[38] Truesdell, C., Introduction à la Mécanique Rationnelle des Milieux Continus (1974), Masson: Masson Paris
[39] de Groot, S. R.; Mazur, P., Non-Equilibrium Thermodynamics (1962), Wiley Interscience: Wiley Interscience London · Zbl 1375.82003
[40] Lhuillier, D., From Molecular mixtures to suspensions of particles, J. Phys. II, 5, 19-36 (1995)
[41] Landau, L. D.; Lifshits, E., Fluid Mechanics (1989), Pergamon Press: Pergamon Press London · Zbl 0714.70004
[42] Bowen, R. M., Theory of mixtures, (Eringen, A. C., Continuum Physics III (1976), Academic Press: Academic Press London) · Zbl 0156.46602
[43] Nigmatulin, R. I., Fundamentals of Mechanics of Heterogeneous Mixtures (1978), Nauka: Nauka Moscow
[44] Whitham, G. B., Linear and Nonlinear Waves (1974), Wiley: Wiley New York · Zbl 0373.76001
[45] Hadamard, J., Leçons sur la Propagation des Ondes et les Équations de L’hydrodynamique (1949), Chelsea: Chelsea New York · JFM 34.0793.06
[46] Y. Garrabos, private communication, 2003; Y. Garrabos, private communication, 2003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.