×

Some limiting properties of the bounds of the present value function of a life insurance portfolio. (English) Zbl 1130.62106

Summary: Under certain assumptions on the dependence structure of the residual lives of the insured (i.e., their independence, positive association, or negative association), we establish some laws of large numbers for the convex upper bounds, derived by the technique of comonotonicity, of the present value function of a homogeneous portfolio composed of the whole-life insurance policies.

MSC:

62P05 Applications of statistics to actuarial sciences and financial mathematics
91B30 Risk theory, insurance (MSC2010)
60F15 Strong limit theorems
60E15 Inequalities; stochastic orderings
Full Text: DOI

References:

[1] Ahcan, A., Darkiewicz, G., Goovaerts, M. and Hoedemakers, T. (2006). Computation of convex bounds for present value functions with random payments. J. Comput. Appl. Math. 186 , 23–42. · Zbl 1119.91039 · doi:10.1016/j.cam.2005.03.063
[2] Beekman, J. A. and Fuelling, C. P. (1993). One approach to dual randomness in life insurance. Scand. Actuarial J. 1993 , 173–182. · Zbl 0792.62092
[3] Bellhouse, D. R. and Panjer, H. H. (1981). Stochastic modelling of interest rates with applications to life contingencies – Part II. J. Risk Insurance 48 , 628–637.
[4] Birkel, T. (1988). A note on the strong law of large numbers for positively dependent random variables. Statist. Prob. Lett. 7 , 17–20. · Zbl 0661.60048 · doi:10.1016/0167-7152(88)90080-6
[5] Boyle, P. P. (1976). Rates of return as random variables. J. Risk Insurance 43 , 693–711.
[6] Dhaene, J. (1989). Stochastic interest rates and autoregressive integrated moving average processes. ASTIN Bull. 19 , 131–138.
[7] Dhaene, J. and Goovaerts, M. J. (1996). Dependency of risks and stop-loss order. ASTIN Bull. 26 , 201–212.
[8] Dhaene, J. and Goovaerts, M. J. (1997). On the dependency of risks in the individual life model. Insurance Math. Econom. 19 , 243–253. · Zbl 0931.62089 · doi:10.1016/S0167-6687(96)00015-7
[9] Dhaene, J. \et (2002a). The concept of comonotonicity in actuarial science and finance: theory. Insurance Math. Econom. 31 , 3–33. · Zbl 1051.62107 · doi:10.1016/S0167-6687(02)00134-8
[10] Dhaene, J. \et (2002b). The concept of comonotonicity in actuarial science and finance: application. Insurance Math. Econom. 31 , 133–161. · Zbl 1037.62107 · doi:10.1016/S0167-6687(02)00135-X
[11] Goovaerts, M. J. and Dhaene, J. (1999). Supermodular ordering and stochastic annuities. Insurance Math. Econom. 24 , 281–290. · Zbl 0942.60008 · doi:10.1016/S0167-6687(99)00002-5
[12] Goovaerts, M. J. and Redant, R. (1999). On the distribution of IBNR reserves. Insurance Math. Econom. 25 , 1–9. · Zbl 0949.62087 · doi:10.1016/S0167-6687(99)00008-6
[13] Goovaerts, M. J., Dhaene, J. and De Schepper, A. (2000). Stochastic upper bounds for present value functions. J. Risk Insurance Theory 67 , 1–14.
[14] Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application . Academic Press, New York. · Zbl 0462.60045
[15] Hoedemakers, T., Darkiewicz, G., Dhaene, J. and Goovaerts, M. (2006). On the distribution of life annuities with stochastic interest rates. To appear in Insurance Math. Econom.
[16] Kaas, R., Dhaene, J. and Goovaerts, M. J. (2000). Upper and lower bounds for sums of random variables. Insurance Math. Econom. 27 , 151–168. · Zbl 0989.60019 · doi:10.1016/S0167-6687(00)00060-3
[17] Lin, Z. (2003). Asymptotic normality of kernel estimates of a density function under association dependence. Acta Math. Sci. 23 , 345–350. · Zbl 1023.62053
[18] Liu, J., Gan, S. and Chen, P. (1999). The Hájeck–Rènyi inequality for the NA random variables and its application. Statist. Prob. Lett. 43 , 99–105. (Correction: 44 , 210.) · Zbl 0929.60020 · doi:10.1016/S0167-7152(98)00251-X
[19] Newman, C. M. (1980). Normal fluctuations and the FKG inequalities. Commun. Math. Phys. 74 , 119–128. · Zbl 0429.60096 · doi:10.1007/BF01197754
[20] Norberg, R. (1990). Payment measures, interest and discounting. An axiomatic approach with applications to insurance. Scand. Actuarial J. 1990 , 14–33. · Zbl 0734.62100 · doi:10.1080/03461238.1990.10413870
[21] Panjer, H. H. and Bellhouse, D. R. (1980). Stochastic modelling of interest rates with applications to life contingencies. J. Risk Insurance 47 , 91–110.
[22] Parker, G. (1994a). Stochastic analysis of a portfolio of endowment insurance policies. Scand. Actuarial J. 1994 , 119–130. · Zbl 0810.62094 · doi:10.1080/03461238.1994.10413934
[23] Parker, G. (1994b). Two stochastic approaches for discounting actuarial functions. ASTIN Bull. 24 , 167–181.
[24] Parker, G. (1997). Stochastic analysis of the interaction between investment and insurance risks. N. Amer. Actuarial J. 1 , 55–71. · Zbl 1080.91530
[25] Simon, S., Goovaerts, M. J. and Dhaene, J. (2000). An easy computable upper bound for the price of an arithmetic Asian option. Insurance Math. Econom. 26 , 175–183. · Zbl 0964.91021 · doi:10.1016/S0167-6687(99)00051-7
[26] Vyncke, D., Goovaerts, M. J. and Dhaene, J. (2001). Convex upper and lower bounds for present value functions. Appl. Stoch. Models Business Industry 17 , 149–164. · Zbl 0971.91030 · doi:10.1002/asmb.437
[27] Wang, S. and Dhaene, J. (1998). Comonotonicity, correlation order and stop-loss premiums. Insurance Math. Econom. 22 , 235–243. · Zbl 0909.62110 · doi:10.1016/S0167-6687(97)00040-1
[28] Waters, H. R. (1978). The moments and distributions of actuarial functions. J. Inst. Actuaries 105 , 61–75.
[29] Wilkie, A. D. (1976). The rate of interest as a stochastic process: theory and applications. In Trans. 20th Internat. Congress Actuaries , Vol. 1 (Tokyo, 1976), pp. 325–338.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.