×

Connectivity calculus of fractal polyhedrons. (English) Zbl 1374.68668

Summary: The paper analyzes the connectivity information (more precisely, numbers of tunnels and their homological (co)cycle classification) of fractal polyhedra. Homology chain contractions and its combinatorial counterparts, called homological spanning forest (HSF), are presented here as an useful topological tool, which codifies such information and provides an hierarchical directed graph-based representation of the initial polyhedra. The Menger sponge and the Sierpiński pyramid are presented as examples of these computational algebraic topological techniques and results focussing on the number of tunnels for any level of recursion are given. Experiments, performed on synthetic and real image data, demonstrate the applicability of the obtained results. The techniques introduced here are tailored to self-similar discrete sets and exploit homology notions from a representational point of view. Nevertheless, the underlying concepts apply to general cell complexes and digital images and are suitable for progressing in the computation of advanced algebraic topological information of 3-dimensional objects.

MSC:

68U05 Computer graphics; computational geometry (digital and algorithmic aspects)

Software:

ChainCon

References:

[1] Barnes, D.; Lambe, L., Fixed point approach to homological perturbation theory, Proc. Am. Math. Soc., 112, 881-892 (1991) · Zbl 0742.55010
[2] Benhamou, C. L.; Lespessailles, E.; Acquet, G.; Harba, R.; Jennane, R.; Loussot, T.; Tourliere, D.; Ohley, W., Fractal organization of trabecular bone images on calcaneus radiographs, J. Bone Miner. Res., 9, 1909-1918 (1994) · Zbl 0900.92095
[3] Di Carlo, A.; Paoluzzi, A.; Shapiro, V., Linear algebraic representation for topological structures, Comput.-Aided Des., 46, 269-274 (2014)
[4] Di Carlo, A.; Milicchio, F.; Paoluzzi, A.; Shapiro, V., Chain-based representations for solid and physical modeling, IEEE Trans. Autom. Sci. Eng., 6, 454-467 (2009)
[8] Forman, R., Morse theory for cell complexes, Adv. Math., 134, 90-145 (1998) · Zbl 0896.57023
[10] González-Díaz, R.; Real, P., On the cohomology of 3d digital images, Discret. Appl. Math., 147, 245-263 (2005) · Zbl 1099.68120
[12] Kaczynski, T.; Mischaikow, K.; Mrozek, M., Computational Homology, Applied Mathematical Sciences, vol. 157 (2004), Springer-Verlag: Springer-Verlag New York · Zbl 1039.55001
[13] Klette, R.; Rosenfeld, A., Digital Geometry - Geometric Methods for Digital Picture Analysis (2004), Morgan Kaufmann: Morgan Kaufmann San Francisco · Zbl 1064.68090
[15] Listing, J. B., Der Census räumlicher Complexe oder Verallgemeinerungen des Euler׳schen Satzes von den Polyëdern, Abh. Math. Cl. K. Gesellschaft Wiss. Gött., 10, 97-182 (1862)
[17] Molina-Abril, H.; Real, P., Homological optimality in discrete Morse theory through chain homotopies, Pattern Recognit. Lett., 33, 1501-1506 (2012)
[18] Molina-Abril, H.; Real, P., Homological spanning forest framework for 2D, Ann. Math. Artif. Intell., 64, 385-409 (2012) · Zbl 1270.55005
[19] Mrozek, M.; Zelawski, A.; Gryglewski, S.; Han, S.; Krajniak, A., Homological methods for extraction and analysis of linear features in multidimensional images, Pattern Recognit., 45, 285-298 (2012)
[21] Pothuaud, L.; Benhamou, C. L.; Porion, P.; Lespessailles, E.; Harba, R.; Levitz, M. D., Fractal dimension of trabecular bone projection texture is related to three-dimensional microarchitecture, J. Bone Miner. Res., 15, 691-699 (2000)
[22] Robins, V.; Meiss, J. D.; Bradley, E., Computing connectednessan exercise in computational topology, Nonlinearity, 11, 913-922 (1998) · Zbl 0957.54010
[23] Robins, V.; Meiss, J. D.; Bradley, E., Computing connectednessdisconnectedness and discreteness, Physica D, 139, 276-300 (1998) · Zbl 1098.37546
[25] Sergeraert, F., The computability problem in algebraic topology, Adv. Math., 104, 1-29 (1994) · Zbl 0823.55011
[26] Sierpiński, W., Sur une courbe dont tout point est un point de ramification, C.R. Acad. Sci. Paris, 160, 302-305 (1915) · JFM 45.0628.02
[27] Thomas, G. N.; Ong, S. Y.; Tham, Y. C.; Hsu, W.; Lee, M. L.; Lau, Q. P.; Tay, W. T.; Alessi-Calandro, J.; Hodgson, L. A.; Kawasaki, R.; Wond, T. Y.; Cheung, C. Y., Measurement of the macular vascular fractal dimension using a computer-assisted program, Invest. Ophthalmol. Vis. Sci. (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.