×

Lattice-point generating functions for free sums of convex sets. (English) Zbl 1283.52003

Summary: Let \(\mathcal J\) and \(\mathcal K\) be convex sets in \(\mathbb R^n\) whose affine spans intersect at a single rational point in \(\mathcal J\cap\mathcal K\), and let \(\mathcal J\oplus\mathcal K=\mathrm{conv}(\mathcal J\cup\mathcal K)\). We give formulas for the generating function \[ \sigma_{\mathrm{cone}(\mathcal J\oplus \mathcal K)}(z_1,\dots,z_n,z_{n+1}) =\sum_{(m_1,\dots,m_n)\in t(\mathcal J\oplus \mathcal K)\cap \mathbb Z^n} z^{m_1}_1\cdots z_n^{m_n}z_{n+1}^t \] of lattice points in all integer dilates of \(\mathcal J\oplus\mathcal K\) in terms of \(\sigma_{\mathrm{cone}\mathcal J}\) and \({\sigma}_{\mathrm{cone}\mathcal K}\), under various conditions on \(\mathcal J\) and \(\mathcal K\).
This work is motivated by (and recovers) a product formula of B. Braun [Electron. J. Comb. 13, No. 1, Research paper N15, 5 p. (2006; Zbl 1109.52011)] for the Ehrhart series of \(\mathcal P\oplus\mathcal Q\) in the case where \(\mathcal P\) and \(\mathcal Q\) are lattice polytopes containing the origin, one of which is reflexive. In particular, we find necessary and sufficient conditions for Braun’s formula and its multivariate analogue.

MSC:

52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)
52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry)

Citations:

Zbl 1109.52011

References:

[1] Batyrev, V. V., Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom., 3, 3, 493-535 (1994) · Zbl 0829.14023
[2] Beck, M.; Hoşten, S., Cyclotomic polytopes and growth series of cyclotomic lattices, Math. Res. Lett., 13, 4, 607-622 (2006) · Zbl 1175.11030
[3] Beck, M.; Robins, S., Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra, Undergrad. Texts Math. (2007), Springer: Springer New York, electronically available at · Zbl 1114.52013
[4] Braun, B., An Ehrhart series formula for reflexive polytopes, Electron. J. Combin., 13, 1 (2006), Note 15, 5 pp. (electronic) · Zbl 1109.52011
[5] Bruns, W., Binomial regular sequences and free sums · Zbl 1323.52006
[6] Bruns, W.; Römer, T., \(h\)-vectors of Gorenstein polytopes, J. Combin. Theory Ser. A, 114, 1, 65-76 (2007) · Zbl 1108.52013
[7] Candelas, P.; Skarke, H., F-theory, \(SO(32)\) and toric geometry, Phys. Lett. B, 413, 1-2, 63-69 (1997)
[8] Ehrhart, E., Sur les polyèdres rationnels homothétiques à \(n\) dimensions, C. R. Acad. Sci. Paris, 254, 616-618 (1962) · Zbl 0100.27601
[9] Fiset, M. H.J.; Kasprzyk, A. M., A note on palindromic \(δ\)-vectors for certain rational polytopes, Electron. J. Combin., 15, 1 (2008), Note 18, 4 pp. (electronic) · Zbl 1163.05304
[10] Henk, M.; Richter-Gebert, J.; Ziegler, G. M., Basic properties of convex polytopes, (Handbook of Discrete and Computational Geometry. Handbook of Discrete and Computational Geometry, CRC Press Ser. Discrete Math. Appl. (1997), CRC: CRC Boca Raton, FL), 243-270 · Zbl 0911.52007
[11] Hibi, T., Algebraic Combinatorics on Convex Polytopes (1992), Carslaw Publications · Zbl 0772.52008
[12] Hibi, T., Dual polytopes of rational convex polytopes, Combinatorica, 12, 2, 237-240 (1992) · Zbl 0758.52009
[13] McMullen, P., Constructions for projectively unique polytopes, Discrete Math., 14, 4, 347-358 (1976) · Zbl 0319.52010
[14] Nill, B.; Schepers, J., Gorenstein polytopes and their stringy E-functions, Math. Ann., 355, 2, 457-480 (2013) · Zbl 1271.14076
[15] Perles, M. A.; Shephard, G. C., Facets and nonfacets of convex polytopes, Acta Math., 119, 113-145 (1967) · Zbl 0161.19301
[16] Stanley, R. P., Enumerative Combinatorics, vol. 1, Cambridge Stud. Adv. Math., vol. 49 (1997), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0889.05001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.