×

\(\varepsilon\)-constants and equivariant Arakelov-Euler characteristics. (English) Zbl 1039.11078

The theory of \(\varepsilon\)-constants can be traced back to Gauss: the sign for the quadratic Gauss sums has important consequences for the distribution of quadratic residues, and Gauss sums occur as constants in the functional equations of Dirichlet \(L\)-series. To describe modern conjectures descending from these results, suppose \({\mathcal X}\) is a projective and flat regular scheme over Spec\(({\mathbb Z})\) which is an integral model of a smooth projective variety \(X\) of dimension \(d\) over \({\mathbb Q}.\) The Hasse-Weil function \(L({\mathcal X}, s)\) is conjectured to have an analytic continuation and to satisfy a functional equation \(L({\mathcal X}, s) = \varepsilon ({\mathcal X})\;A({\mathcal X})^{-s}\;L({\mathcal X}, d+1-s),\) where the “\(\varepsilon\)-constant” \(\varepsilon ({\mathcal X})\) and the “conductor” \(A({\mathcal X})\) are real numbers which, assuming certain choices, can be defined independently of any conjecture. The knowledge of these numbers is important in many arithmetic applications. Deligne’s formulae give expressions for both of them as products of certain rational numbers, roots of unity and generalized Gauss sums. Bloch’s conjectural conductor formula gives \(A({\mathcal X})\) as the degree of a localized Chern class.
In this paper, the authors study a “tame equivariant” situation: let \({\mathcal X} \to {\mathcal Y}\) be a tame \(G\)-cover of regular arithmetic varieties over \({\mathbb Z},\) \(G\) being a finite group; assuming that \({\mathcal X}\) and \({\mathcal Y}\) have “tame” reduction, they show how to determine the \(\varepsilon\)-constant in the conjectural functional equation of the Artin-Hasse-Weil function \(L({\mathcal X}/{\mathcal Y}, V, s)\) for a symplectic representation \(V\) of \(G\) from a suitably refined equivariant Arakelov-de Rham-Euler characteristic of \({\mathcal X}.\) Their result may be viewed firstly as a higher dimensional version of the Cassou-Noguès-Taylor characterization of tame symplectic Artin root numbers in terms of rings of integers with their trace form, and secondly as a signed equivariant version of Bloch’s conductor formula.

MSC:

11R33 Integral representations related to algebraic numbers; Galois module structure of rings of integers
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
14G40 Arithmetic varieties and schemes; Arakelov theory; heights

Keywords:

equivariant; tame

References:

[1] Arai K., Conductor formula of Bloch, in tame case , Thesis, University of Tokyo, 2000 (in Japanese).
[2] Bismut J.-M. , Equivariant immersions and Quillen metrics , J. Differential Geom. 41 ( 1995 ) 53 - 157 . MR 1316553 | Zbl 0826.32024 · Zbl 0826.32024
[3] Bloch S., Cycles on Arithmetic schemes and Euler characteristics of curves, in: Proceedings of Symposia in Pure Math. , Vol. 46 , Part 2, AMS, 421-450. MR 927991 | Zbl 0654.14004 · Zbl 0654.14004
[4] Burns D., Equivariant Tamagawa numbers and Galois module theory I , preprint. MR 1863302
[5] Burns D., Equivariant Tamagawa numbers and Galois module theory II , preprint. MR 1863302
[6] Cassou-Noguès Ph. , Taylor M.J. , Local root numbers and hermitian Galois structure of rings of integers , Math. Annalen, 263 ( 1983 ) 251 - 261 . Article | MR 698007 | Zbl 0494.12010 · Zbl 0494.12010 · doi:10.1007/BF01456885
[7] Chinburg T. , Galois structure of de Rham cohomology of tame covers of schemes , Ann. Math. 139 ( 1994 ) 443 - 490 , Corrigendum: Ann. Math. 140 (1994) 251. MR 1274097 | Zbl 0828.14007 · Zbl 0828.14007 · doi:10.2307/2946586
[8] Chinburg T. , Erez B. , Pappas G. , Taylor M.J. , \epsilon -constants and the Galois structure of de Rham cohomology , Ann. Math. 146 ( 1997 ) 411 - 473 . Zbl 0939.14009 · Zbl 0939.14009 · doi:10.2307/2952466
[9] Chinburg T. , Erez B. , Pappas G. , Taylor M.J. , On the \epsilon -constants of arithmetic schemes , Math. Ann. 311 ( 1998 ) 377 - 395 . Zbl 0927.14012 · Zbl 0927.14012 · doi:10.1007/s002080050191
[10] Chinburg T. , Erez B. , Pappas G. , Taylor M.J. , On the \epsilon -constants of a variety over a finite field , Amer. J. Math. 119 ( 1997 ) 503 - 522 . Zbl 0927.14013 · Zbl 0927.14013 · doi:10.1353/ajm.1997.0016
[11] Chinburg T. , Erez B. , Pappas G. , Taylor M.J. , Tame actions of group schemes: integrals and slices , Duke Math. J. 82 ( 2 ) ( 1996 ) 269 - 308 . Article | MR 1387229 | Zbl 0907.14021 · Zbl 0907.14021 · doi:10.1215/S0012-7094-96-08212-5
[12] Chinburg T. , Pappas G. , Taylor M.J. , \epsilon -constants and the Galois structure of de Rham cohomology II , J. Reine Angew. Math. 519 ( 2000 ) 201 - 230 . Zbl 1017.11054 · Zbl 1017.11054 · doi:10.1515/crll.2000.014
[13] Chinburg T. , Pappas G. , Taylor M.J. , \epsilon -constants and Arakelov-Euler characteristics , Math. Res. Lett. 7 ( 2000 ) 433 - 446 . Zbl 1097.14501 · Zbl 1097.14501 · doi:10.4310/MRL.2000.v7.n4.a9
[14] Chinburg T., Pappas G., Taylor M.J., Duality and hermitian Galois module structure , to appear in the Proc. L.M.S. MR 1978570 | Zbl 1109.11053 · Zbl 1109.11053 · doi:10.1112/S0024611502014016
[15] Deligne P. , Les constantes des équations fonctionnelles des fonctions L , in: Lecture Notes in Math. , 349 , Springer-Verlag , Heidelberg , 1974 , pp. 501 - 597 . MR 349635 | Zbl 0271.14011 · Zbl 0271.14011
[16] Fröhlich A. , Galois Module Structure of Algebraic Integers , Springer Ergebnisse, Band 1, Folge 3 , Springer-Verlag , Heidelberg , 1983 . MR 717033 | Zbl 0501.12012 · Zbl 0501.12012
[17] Fröhlich A. , Classgroups and Hermitian Modules , Progress in Mathematics , 48 , Birkhäuser , Basel , 1984 . MR 756236 | Zbl 0539.12005 · Zbl 0539.12005
[18] Fröhlich A. , Taylor M.J. , Algebraic Number Theory , Cambridge Studies in Advanced Mathematics , 27 , Cambridge University Press , 1991 . MR 1215934 | Zbl 0744.11001 · Zbl 0744.11001
[19] Fulton W. , Lang S. , Riemann-Roch Algebra , Grundlehren , 277 , Springer-Verlag , 1985 . MR 801033 | Zbl 0579.14011 · Zbl 0579.14011
[20] Gillet H. , Soulé C. , Characteristic classes for algebraic vector bundles with hermitian metrics I, II , Ann. Math. 131 ( 1990 ) 163 - 203 , 205-238. MR 1038362 | Zbl 0715.14018 · Zbl 0715.14018 · doi:10.2307/1971512
[21] Gillet H. , Soulé C. , An arithmetic Riemann-Roch theorem , Invent. Math. 110 ( 1992 ) 473 - 543 . MR 1189489 | Zbl 0777.14008 · Zbl 0777.14008 · doi:10.1007/BF01231343
[22] Gillet H. , Soulé C. , Analytic torsion and the arithmetic Todd genus. With an appendix by D. Zagier , Topology 30 ( 1 ) ( 1991 ) 21 - 54 . MR 1081932 | Zbl 0787.14005 · Zbl 0787.14005 · doi:10.1016/0040-9383(91)90032-Y
[23] Hartshorne R. , Residues and Duality , Lecture Notes in Math. , 20 , Springer-Verlag , 1966 . MR 222093 | Zbl 0212.26101 · Zbl 0212.26101 · doi:10.1007/BFb0080482
[24] Hecke E. , Mathematische Werke , Vandenhoeck and Ruprecht , Göttingen , 1983 . MR 749754 | Zbl 0092.00102 · Zbl 0092.00102
[25] Ireland K. , Rosen M. , A Classical Introduction to Modern Number Theory , Springer Graduate Texts in Mathematics , 84 , Springer , New York , 1982 . MR 661047 | Zbl 0482.10001 · Zbl 0482.10001
[26] Kato K. , Logarithmic structures of Fontaine-Illusie , in: Proc. 1st JAMI Conf. , Johns-Hopkins Univ. Press , 1990 , pp. 191 - 224 . MR 1463703 | Zbl 0776.14004 · Zbl 0776.14004
[27] Knusden F. , Mumford D. , The projectivity of moduli spaces of stable curves , Math. Scand. 39 ( 1976 ) 19 - 55 . MR 437541 | Zbl 0343.14008 · Zbl 0343.14008
[28] Kato K., Saito T., Conductor formula of Bloch , preprint, 2001.
[29] Lang S. , Algebraic Number Theory , Addison-Wesley , Reading MA , 1970 . MR 282947 | Zbl 0211.38404 · Zbl 0211.38404
[30] Martinet J. , Character theory and Artin L -functions , in: Fröhlich A. (Ed.), Algebraic Number Fields, Proc. Durham Symposium 1975 , Academic Press , London , 1977 . MR 447187 | Zbl 0359.12015 · Zbl 0359.12015
[31] Milne J.S. , Étale Cohomology , Princeton University Press , 1980 . MR 559531 | Zbl 0433.14012 · Zbl 0433.14012
[32] Ray D.B. , Singer I.M. , Analytic torsion for complex manifolds , Ann. of Math. (2) 98 ( 1973 ) 154 - 177 . MR 383463 | Zbl 0267.32014 · Zbl 0267.32014 · doi:10.2307/1970909
[33] Saito T. , \epsilon -factor of a tamely ramified sheaf on a variety , Inv. Math. 113 ( 1993 ) 389 - 417 . Zbl 0790.14016 · Zbl 0790.14016 · doi:10.1007/BF01244312
[34] Soulé C. , Abramovich D. , Burnol J.-F. , Kramer J. , Lectures on Arakelov Geometry , Cambridge Studies in Advanced Mathematics , 33 , Cambridge University Press , Cambridge , 1992 . MR 1208731 | Zbl 0812.14015 · Zbl 0812.14015
[35] Tate J. , Fröhlich A. (Ed.), Thesis in “Algebraic Number Fields” , Academic Press , 1976 .
[36] Taylor M.J. , On Fröhlich’s conjecture for rings of integers of tame extensions , Invent. Math. 63 ( 1981 ) 41 - 79 . MR 608528 | Zbl 0469.12003 · Zbl 0469.12003 · doi:10.1007/BF01389193
[37] Taylor M.J. , Classgroups of Group Rings , LMS Lecture Notes , 91 , Cambridge University Press , Cambridge , 1984 . MR 748670 | Zbl 0597.13002 · Zbl 0597.13002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.