×

The rank of the endomorphism monoid of a uniform partition. (English) Zbl 1176.20059

The authors prove that the minimal possible cardinality for a generating set of the semigroup of all transformations of a finite set of cardinality at least three that leave a nontrivial uniform partition invariant equals four. For two other semigroups of all transformations which preserve (in a certain sense) the equivalence relation determined by a uniform partition as above it is shown that the minimal possible cardinality for a generating set is three.

MSC:

20M20 Semigroups of transformations, relations, partitions, etc.
20M05 Free semigroups, generators and relations, word problems

Software:

Magma; GAP

References:

[1] Araújo, J., Mitchell, J.D.: Relative ranks in the monoid of endomorphisms of an independence algebra. Mon.hefte. Math. 151(1), 1–10 (2007) · Zbl 1126.20045 · doi:10.1007/s00605-006-0433-5
[2] Araújo, J., Mitchell, J.D., Silva, N.: On generating countable sets of endomorphisms. Algebra Univers. 50(1), 61–67 (2003) · Zbl 1091.08002 · doi:10.1007/s00012-003-1809-1
[3] Banach, S.: Sur un theorème de M. Sierpiński. Fundam. Math. 25, 5–6 (1935) · JFM 61.0230.01
[4] Barnes, G., Levi, I.: Ranks of semigroups generated by order-preserving transformations with a fixed partition type. Commun. Algebra 31(4), 1753–1763 (2003) · Zbl 1022.20034 · doi:10.1081/AGB-120018506
[5] Barnes, G., Levi, I.: On idempotent ranks of semigroups of partial transformations. Semigroup Forum 70(1), 81–96 (2005) · Zbl 1104.20056 · doi:10.1007/s00233-004-0142-0
[6] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: The user language. J. Symb. Comput. 24(3–4), 235–265 (1997). Computational algebra and number theory (London, 1993) · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[7] Cichoń, J., Mitchell, J.D., Morayne, M.: Generating continuous mappings with Lipschitz mappings. Trans. Am. Math. Soc. 359(5), 2059–2074 (2007). (Electronic) · Zbl 1110.54019 · doi:10.1090/S0002-9947-06-04026-8
[8] Garba, G.U.: On the nilpotent ranks of certain semigroups of transformations. Glasg. Math. J. 36(1), 1–9 (1994) · Zbl 0801.20050 · doi:10.1017/S0017089500030482
[9] Gomes, G.M.S., Howie, J.M.: On the ranks of certain semigroups of order-preserving transformations. Semigroup Forum 45(3), 272–282 (1992) · Zbl 0769.20029 · doi:10.1007/BF03025769
[10] Higgins, P.M., Howie, J.M., Ruškuc, N.: Generators and factorisations of transformation semigroups. Proc. R. Soc. Edinb. Sect. A 128(6), 1355–1369 (1998) · Zbl 0920.20056
[11] Higgins, P.M., Howie, J.M., Mitchell, J.D., Ruškuc, N.: Countable versus uncountable ranks in infinite semigroups of transformations and relations. Proc. Edinb. Math. Soc. (2) 46(3), 531–544 (2003) · Zbl 1043.20040 · doi:10.1017/S0013091502000974
[12] Higgins, P.M., Mitchell, J.D., Morayne, M., Ruškuc, N.: Rank properties of endomorphisms of infinite partially ordered sets. Bull. Lond. Math. Soc. 38(2), 177–191 (2006) · Zbl 1101.06001 · doi:10.1112/S0024609305018138
[13] Howie, J.M.: Fundamentals of Semigroup Theory. London Mathematical Society Monographs. New Series, vol. 12. Clarendon, Oxford (1995) · Zbl 0835.20077
[14] Howie, J.M., McFadden, R.B.: Idempotent rank in finite full transformation semigroups. Proc. R. Soc. Edinb. Sect. A 114(3–4), 161–167 (1990) · Zbl 0704.20050
[15] Howie, J.M., Ruškuc, N., Higgins, P.M.: On relative ranks of full transformation semigroups. Commun. Algebra 26(3), 733–748 (1998) · Zbl 0902.20027 · doi:10.1080/00927879808826160
[16] Huisheng, P.: On the rank of the semigroup T E (X). Semigroup Forum 70(1), 107–117 (2005) · Zbl 1100.20043 · doi:10.1007/s00233-004-0135-z
[17] Kleidman, P., Liebeck, M.: The Subgroup Structure of the Finite Classical Groups. London Mathematical Society Lecture Note Series, vol. 129. Cambridge University Press, Cambridge (1990) · Zbl 0697.20004
[18] Levi, I.: Nilpotent ranks of semigroups of partial transformations. Semigroup Forum 72(3), 459–476 (2006) · Zbl 1105.20050 · doi:10.1007/s00233-005-0538-5
[19] Levi, I., Seif, S.: Combinatorial techniques for determining rank and idempotent rank of certain finite semigroups. Proc. Edinb. Math. Soc. (2) 45(3), 617–630 (2002) · Zbl 1011.20060 · doi:10.1017/S0013091501000530
[20] Meldrum, J.D.P.: Wreath Products of Groups and Semigroups. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 74. Longman, Harlow (1995) · Zbl 0833.20001
[21] Ribeiro, M.I.M.: Rank properties in finite inverse semigroups. Proc. Edinb. Math. Soc. (2) 43(3), 559–568 (2000) · Zbl 0970.20044 · doi:10.1017/S0013091500021192
[22] Scott, L.L.: Representations in characteristic p. In: The Santa Cruz Conference on Finite Groups, Univ. California, Santa Cruz, Calif., 1979. Proc. Sympos. Pure Math., vol. 37, pp. 319–331. Am. Math. Soc., Providence (1980)
[23] Sierpiński, W.: Sur les suites infinies de fonctions définies dans les ensembles quelconques. Fundam. Math. 24, 209–212 (1935) · JFM 61.0229.03
[24] Straubing, H.: The wreath product and its applications. In: Formal Properties of Finite Automata and Applications, Ramatuelle, 1988. Lecture Notes in Comput. Sci., vol. 386, pp. 15–24. Springer, Berlin (1989)
[25] The GAP Group: GAP–Groups, Algorithms, and Programming, Version 4.4.10 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.