×

Elementary stochastic calculus for finance with infinitesimals. (English) Zbl 1424.60070

Summary: The concept of an equivalent martingale measure is of key importance for pricing of financial derivative contracts. The goal of the paper is to apply infinitesimals in the non-standard analysis set-up to provide an elementary construction of the equivalent martingale measure built on hyperfinite binomial trees with infinitesimal time steps.

MSC:

60H05 Stochastic integrals
91G20 Derivative securities (option pricing, hedging, etc.)
60H30 Applications of stochastic analysis (to PDEs, etc.)
Full Text: DOI

References:

[1] Albeverio S.; Fenstad J. E.; Hoegh-Krohn R.; Lindstrom T., Nonstadard Methods in Stochastic Analysis and Mathematical Physics, Dover Publications, 1986 · Zbl 0605.60005
[2] Anderson R. M., A nonstandard representation for Brownian motion and Itô integration, Israel Math. J. 25 (1976), 15-46 · Zbl 0327.60039 · doi:10.1007/BF02756559
[3] Bacheier L., La Theorie de la Speculation, Annales de l’Ecole Normale Superieure, 3, Gauthier-Villars, Paris, 1900 · JFM 31.0075.12
[4] Berg I., Principles of Infinitesimal Stochastic and Financial Analysis, World Scientific, Singapore, 2000 · Zbl 0964.91024
[5] Brown R., A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies, Phil. Mag. 4 (1828), 161-173
[6] Cox J.; Ross S.; Rubinstein M., Option pricing: a simplified approach, J. Financial Econom. 7 (1979), 229-263 · Zbl 1131.91333 · doi:10.1016/0304-405X(79)90015-1
[7] Cutland N.; Kopp E.; Willinger W., A nonstandard approach to option pricing, Mathematical Finance 1 (1991), no. 4, 1-38 · Zbl 0900.90104 · doi:10.1111/j.1467-9965.1991.tb00017.x
[8] Cutland N.; Kopp E.; Willinger W., A nonstandard treatment of options driven by Poisson processes, Stochastics Stochastics Rep. 42 (1993), 115-133 · Zbl 0808.90018 · doi:10.1080/17442509308833813
[9] Cutland N.; Kopp E.; Willinger W., From discrete to continuous stochastic calculus, Stochastics Stochastics Rep. 52 (1995), 173-192 · Zbl 0864.60039 · doi:10.1080/17442509508833970
[10] Cutland N.; Kopp E.; Willinger W.; Wyman M. C., Convergence of Snell envelopess and critical prices in the American put, Mathematics of Derivative Securitities (M.A.H. Dempster and S.R. Pliska, eds.), Cambridge University Press, Cambridge, 1997, pp. 126-140 · Zbl 0921.90016
[11] Cutland N., Loeb Measures in Practice: Recent Advances, Lecture Notes in Mathematics, 1751, Springer, Berlin, 2000 · Zbl 0963.28015 · doi:10.1007/b76881
[12] Einstein A., Investigations on the theory of the Brownian movement, R. Fürth (Ed.), Dover Publications, New York, 1956 · Zbl 0936.01034
[13] Herzberg F. S., Stochastic Calculus with Infinitesimals, Springer, Heidelberg, 2013 · Zbl 1302.60006
[14] Hull J., Options, Futures, and Other Derivatives, 8th edition, Prentice Hall, 2011 · Zbl 1087.91025
[15] Hurd A. E.; Loeb P. A., An Introduction to Nonstandard Real Analysis, Academic Press, Orlando, FL, 1985 · Zbl 0583.26006
[16] Kalina M., Probability in the alternative set theory, Comment. Math. Univ. Carolin. 30 (1989), no. 2, 347-356 · Zbl 0677.03039
[17] Keisler J. H., An infinitesimal approach to stochastic analysis, Mem. Amer. Math. Soc. 297, 1984 · Zbl 0529.60062
[18] Keisler J. H., Elementary Calculus - an Infinitesimal Approach, 2nd edition, University of Wisconsin - Creative Commons., 2000 · Zbl 0655.26002
[19] Kopp P. E., Hyperfinite Mathematical Finance, in Arkeryd et al. Nonstandard Analysis: Theory and Applications, Kluwer, Dordrecht, 1997 · Zbl 0952.91028
[20] Lindstrom T., Nonlinear stochastic integrals for hyperfinite Lévy processes, Logic and Analysis 1 (2008), 91-129 · Zbl 1156.60035 · doi:10.1007/s11813-007-0004-7
[21] Loeb P. A., Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113-122 · Zbl 0312.28004 · doi:10.1090/S0002-9947-1975-0390154-8
[22] Nelson A., Internal set theory: a new approach to nonstandard analysis, Bull. Amer. Math. Soc. 83 (1977), no. 6, 1165-1198 · Zbl 0373.02040 · doi:10.1090/S0002-9904-1977-14398-X
[23] Nelson E., Radically Elementary Probability Theory, Princeton University Press, Princeton, NJ, 1987 · Zbl 0651.60001
[24] Pudlák P.; Sochor A., Models of the alternative set theory, J. Symbolic Logic 49 (1984), 570-585 · Zbl 0578.03028 · doi:10.2307/2274190
[25] Rebonato R., Volatility and Correlation: the Perfect Hedger and the Fox, 2nd edition, Wiley, 2004
[26] Robinson A., Nonstandard analysis, Proc. Roy. Acad. Amsterdam Ser. A 64 (1961), 432-440 · Zbl 0424.01031
[27] Shreve S., Stochastic Calculus for Finance II. Continuous Time Models, Springer, New York, 2004 · Zbl 1068.91041
[28] Shreve S., Stochastic Calculus for Finance I. The Binomial Asset Pricing Model, Springer, New York, 2005 · Zbl 1068.91040
[29] Vopěnka P., Mathematics in the Alternative Set Theory, Teubner, Leipzig, 1979 · Zbl 0499.03042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.