×

Eigensensitivity of damped system with distinct and repeated eigenvalues by chain rule. (English) Zbl 1530.70020

Summary: In this paper, a novel algorithm for computing the derivatives of eigensolutions of asymmetric damped systems with distinct and repeated eigenvalues is developed without using second-order derivatives of the eigenequations, which has a significant benefit over the existing published methods. To achieve this, the algorithm is proposed by (1) imposing consistent normalization conditions for both left and right eigenvectors throughout the computational system, and (2) solving sensitivity problems using the chain rule. These contributions add significant value to the proposed method. Additionally, the numerical difficulty is overcome by suggesting justifying Nelson (1976)’s technique [H. D. Nelson and J. M. McVaugh, J. Manuf. Sci. Eng. 98, No. 2, 593–600 (1976; doi:10.1115/1.3438942)] based on the normalization conditions. Even though the proposed algorithm is simple and easy to implement, the employment of chain rule with new normalization in this note has never been reported in the literature, especially for the problem of eigensensitivity. Because this new algorithm does not require the second-order derivatives of the eigenequations, the analytical and numerical solutions for eigensensitivity offered by this method are less complicated than existing available solutions. The validity and applicability of the method are demonstrated through five numerical examples, showcasing its implementation in displacement- and state-space equations (rotordynamic system). Also, verifications are found to be in reasonable agreement with the approximated method.
© 2023 John Wiley & Sons, Ltd.

MSC:

70J35 Forced motions in linear vibration theory
70-08 Computational methods for problems pertaining to mechanics of particles and systems
Full Text: DOI

References:

[1] LiL, HuY, WangX. A parallel way for computing eigenvector sensitivity of asymmetric damped systems with distinct and repeated eigenvalues. Mech Syst Signal Process. 2012;30:30‐77. doi:10.1016/j.ymssp.2012.01.008
[2] XuZ, WuB. Derivatives of complex eigenvectors with distinct and repeated eigenvalues. Int J Numer Methods Eng. 2008;75(8):945‐963. doi:10.1002/nme.2280 · Zbl 1195.74069
[3] WangP, DaiH. Calculation of eigenpair derivatives for asymmetric damped systems with distinct and repeated eigenvalues. Int J Numer Methods Eng. 2015;103(7):501‐515. doi:10.1002/nme.4901 · Zbl 1352.65122
[4] XuZH, ZhongHX, ZhuXW, WuBS. An efficient algebraic method for computing eigensolution sensitivity of asymmetric damped systems. J Sound Vib. 2009;327(3-5):584‐592. doi:10.1016/j.jsv.2009.07.013
[5] WangP, WuJ, YangX. An improved method for computing Eigenpair derivatives of damped system. Math Probl Eng. 2018;2018:1‐8. doi:10.1155/2018/8050132 · Zbl 1427.70047
[6] WangP, YangX. Eigensensitivity of damped system with defective multiple eigenvalues. J Vibroeng. 2016;18(4):2331‐2342. doi:10.21595/jve.2016.15791
[7] WangP, YangX, MiJ. Computing eigenpair derivatives of asymmetric damped system by generalized inverse. J Vibroeng. 2017;19(7):5290‐5300. doi:10.21595/jve.2017.18232
[8] FoxRL, KapoorMP. Rates of change of eigenvalues and eigenvectors. AIAA J. 1968;6(12):2426‐2429. doi:10.2514/3.5008 · Zbl 0181.53003
[9] RogersLC. Derivatives of eigenvalues and eigenvectors. AIAA J. 1970;8(5):943‐944. doi:10.2514/3.5795
[10] PlautRH, HuseyinK. Derivatives of eigenvalues and eigenvectors in non‐self‐adjoint systems. AIAA J. 1973;11(2):250‐251. doi:10.2514/3.6740
[11] AdhikariS. Rates of change of eigenvalues and eigenvectors in damped dynamic system. AIAA J. 1999;37(11):1452‐1458. doi:10.2514/2.622
[12] AdhikariS. Calculation of derivative of complex modes using classical normal modes. Comput Struct. 2000;77(6):625‐633. doi:10.1016/S0045‐7949(00)00016‐X
[13] AdhikariS, FriswellMI. Eigenderivative analysis of asymmetric non‐conservative systems. Int J Numer Methods Eng. 2001;51(6):709‐733. doi:10.1002/nme.186.abs · Zbl 0992.70016
[14] ZengQH. Highly accurate modal method for calculating eigenvector derivatives in viscous damping systems. AIAA J. 1995;33(4):746‐751. doi:10.2514/3.12453 · Zbl 0826.73037
[15] MoonYJ, KimBW, KoMG, LeeIW. Modified modal methods for calculating eigenpair sensitivity of asymmetric damped system. Int J Numer Methods Eng. 2004;60(11):1847‐1860. doi:10.1002/nme.1025 · Zbl 1060.70511
[16] NelsonRB. Simplified calculation of eigenvector derivatives. AIAA J. 1976;14(9):1201‐1205. doi:10.2514/3.7211 · Zbl 0342.65021
[17] Mills‐CurranWC. Calculation of eigenvector derivatives for structures with repeated eigenvalues. AIAA J. 1988;26(7):867‐871. doi:10.2514/3.9980 · Zbl 0665.73069
[18] OjalvoIU. Efficient computation of modal sensitivities for systems with repeated frequencies. AIAA J. 1988;26(3):361‐366. doi:10.2514/3.9897 · Zbl 0682.73043
[19] DaileyRL. Eigenvector derivatives with repeated eigenvalues. AIAA J. 1989;27(4):486‐491. doi:10.2514/3.10137
[20] ShawJ, JayasuriyaS. Modal sensitivities for repeated eigenvalues and eigenvalue derivatives. AIAA J. 1992;30(3):850‐852. doi:10.2514/3.10999 · Zbl 0774.65019
[21] TangJ, NiWM, WangWL. Eigensolutions sensitivity for quadratic eigenproblems. J Sound Vib. 1996;196(2):179‐188. doi:10.1006/jsvi.1996.0475 · Zbl 1235.70010
[22] TangJ, WangWL. On calculation of sensitivity for non‐defective eigenproblems with repeated roots. J Sound Vib. 1999;225(4):611‐631. doi:10.1006/jsvi.1999.2098 · Zbl 1235.70011
[23] FriswellMI, AdhikariS. Derivatives of complex eigenvectors using Nelson’s method. AIAA J. 2000;38(12):2355‐2357. doi:10.2514/2.907
[24] LeeIW, JungGH, LeeJW. Numerical method for sensitivity analysis of eigensystems with non‐repeated and repeated eigenvalues. J Sound Vib. 1996;195(1):17‐32. doi:10.1006/jsvi.1996.9989 · Zbl 1235.74363
[25] BurchettBT, CostelloM. QR‐based algorithm for eigenvalue derivatives. AIAA J. 2002;40(11):2319‐2322. doi:10.2514/2.1569
[26] XieH, DaiH. Davidson method for eigenpairs and their partial derivatives of generalized eigenvalue problems. Commun Numer Methods Eng. 2006;22(2):155‐165. doi:10.1002/cnm.811 · Zbl 1090.65045
[27] LeeTH. Adjoint method for design sensitivity analysis of multiple eigenvalues and associated eigenvectors. AIAA J. 2007;45(8):1998‐2004. doi:10.2514/1.25347
[28] BurchettBT. QZ‐based algorithm for system pole, transmission zero, and residue derivatives. AIAA J. 2009;47(8):1889‐1901. doi:10.2514/1.39759
[29] YoonGH, DonosoA, Carlos BellidoJ, RuizD. Highly efficient general method for sensitivity analysis of eigenvectors with repeated eigenvalues without passing through adjacent eigenvectors. Int J Numer Methods Eng. 2020;121(20):4473‐4492. doi:10.1002/nme.6442 · Zbl 07863227
[30] GargS. Derivatives of eigensolutions for a general matrix. AIAA J. 1973;11(8):1191‐1194. doi:10.2514/3.6892
[31] RudisillCS. Derivatives of eigenvalues and eigenvectors for a general matrix. AIAA J. 1974;12(5):721‐722. doi:10.2514/3.49330 · Zbl 0285.15011
[32] RudisillCS, ChuYY. Numerical methods for evaluating the derivatives of eigenvalues and eigenvectors. AIAA J. 1975;13(6):834‐837. doi:10.2514/3.60449
[33] LeeIW, JungGH. An efficient algebraic method for the computation of natural frequency and mode shape sensitivities-Part I. Distinct natural frequencies. Comput Struct. 1997;62(3):429‐435. doi:10.1016/S0045‐7949(96)00206‐4 · Zbl 0912.73080
[34] LeeIW, JungGH. An efficient algebraic method for the computation of natural frequency and mode shape sensitivities-Part II. Multiple natural frequencies. Comput Struct. 1997;62(3):437‐443. doi:10.1016/S0045‐7949(96)00207‐6
[35] ChoiKM, ChoSW, KoMG, LeeIW. Higher order eigensensitivity analysis of damped systems with repeated eigenvalues. Comput Struct. 2004;82(1):63‐69. doi:10.1016/j.compstruc.2003.08.001
[36] LeeIW, KimDO, JungGH. Natural frequency and mode shape sensitivities of damped systems: part I, distinct natural frequencies. J Sound Vib. 1999;223(3):399‐412. doi:10.1006/jsvi.1998.2129
[37] WuB, XuZ, LiZ. A note on computing eigenvector derivatives with distinct and repeated eigenvalues. Commun Numer Methods Eng. 2007;23(3):241‐251. doi:10.1002/cnm.895 · Zbl 1111.65034
[38] GuedriaN, SmaouiH, ChouchaneM. A direct algebraic method for eigensolution sensitivity computation of damped asymmetric systems. Int J Numer Methods Eng. 2006;68(6):674‐689. doi:10.1002/nme.1732 · Zbl 1128.74015
[39] ChouchaneM, GuedriaN, SmaouiH. Eigensensitivity computation of asymmetric damped systems using an algebraic approach. Mech Syst Signal Process. 2007;21(7):2761‐2776. doi:10.1016/j.ymssp.2007.01.007
[40] PhuorT, YoonGH. Model order reduction for Campbell diagram analysis of shaft‐disc‐blade system in 3D finite elements. Struct Eng Mech. 2022;81(4):411‐428. doi:10.12989/sem.2022.81.4.411
[41] PhuorT. Development and application of three‐dimensional finite element interface model for soil‐jack‐up interaction during preloading [PhD Thesis]. 2020.
[42] PhuorT, HarahapISH, NgCY, Al‐BaredMA. Development of the skew boundary condition for soil‐structure interaction in three‐dimensional finite element analysis. Comput Geotech. 2021;137:104264. doi:10.1016/j.compgeo.2021.104264
[43] PhuorT, HarahapISH, NgCY. Bearing capacity factors for rough conical footing by viscoplasticity finite element analysis. ASCE Int J Geomech. 2021;22(1):04021266. doi:10.1061/(ASCE)GM.1943‐5622.0002256
[44] PhuorT, HarahapIS, NgC‐Y. Bearing capacity factors of flat base footing by finite elements. ASCE J Geotech Geoenviron Eng. 2022;148(8):04022062. doi:10.1061/(ASCE)GT.1943‐5606.0002835
[45] PhuorT, GanzA, TrapperPA. Bearing capacity factors of the cone‐shaped footing in meshfree. Int J Numer Anal Methods Geomech. 2022;47:275‐298. doi:10.1002/nag.3469
[46] StraußF, InagakiM, StarkeJ. Reduction of vibration level in rotordynamics by design optimization. Struct Multidiscip Optim. 2007;34(2):139‐149. doi:10.1007/s00158‐006‐0065‐3
[47] NelsonHD, McVaughJM. The dynamics of rotor‐bearing systems using finite elements. J Manuf Sci E T ASME. 1976;98:593‐600. doi:10.1115/1.3438942
[48] NelsonHD. A finite rotating shaft element using Timoshenko beam theory. J Mech Des Trans ASME. 1980;102:793‐803. doi:10.1115/1.3254824
[49] NandiA, NeogyS. Modelling of rotors with three‐dimensional solid finite elements. J Strain Anal Eng Des. 2001;6(4):359‐371. doi:10.1243/0309324011514539
[50] RahmanT, ValdmanJ. Fast MATLAB assembly of FEM matrices in 2D and 3D: nodal elements. Appl Math Comput. 2013;219(13):7151‐7158. doi:10.1016/j.amc.2011.08.043 · Zbl 1288.65169
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.