×

Comprehensive sensitivity analysis of repeated eigenvalues and eigenvectors for structures with viscoelastic elements. (English) Zbl 07906123

Summary: The paper discusses systems with viscoelastic elements that exhibit repeated eigenvalues in the eigenvalue problem. The mechanical behavior of viscoelastic elements can be described using classical rheological models as well as models that involve fractional derivatives. Formulas have been derived to calculate first- and second-order sensitivities of repeated eigenvalues and their corresponding eigenvectors. A specific case was also examined, where the first derivatives of eigenvalues are repeated. Calculating derivatives of eigenvectors associated with repeated eigenvalues is complex because they are not unique. To compute their derivatives, it is necessary to identify appropriate adjacent eigenvectors to ensure stable control of eigenvector changes. The derivatives of eigenvectors are obtained by dividing them into particular and homogeneous solutions. Additionally, in the paper, a special factor in the coefficient matrix has been introduced to reduce its condition number. The provided examples validate the correctness of the derived formulas and offer a more detailed analysis of structural behavior for structures with viscoelastic elements when altering a single design parameter or simultaneously changing multiple parameters.

MSC:

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
74H45 Vibrations in dynamical problems in solid mechanics

References:

[1] Haftka, RT; Adelman, HM, Recent developments in structural sensitivity analysis, Struct. Optim., 1, 137-151, 1989 · doi:10.1007/BF01637334
[2] Mottershead, JE; Link, M.; Friswell, MI, The sensitivity method in finite element model updating: a tutorial, Mech. Syst. Signal Process., 25, 2275-2296, 2011 · doi:10.1016/j.ymssp.2010.10.012
[3] Haftka, R.T., Gürdal, Z.: Elements of structural optimization. 3rd ed. Springer-Science+Business Media, B.V; (1992). doi:10.1007/978-94-011-2550-5 · Zbl 0782.73004
[4] Adhikari, S.: Structural Dynamics with Generalized Damping Models: Identification. Wiley-ISTE: Hoboken & London; (2013). doi:10.1002/9781118862971
[5] Song, H.; Chen, Z.; Zhang, J., Sensitivity analysis of statistical energy analysis models based on interval perturbation approach, Acta Mech., 231, 3989-4001, 2020 · Zbl 1451.74096 · doi:10.1007/s00707-020-02744-1
[6] Van Heulen, F.; Haftka, RT; Kim, NH, Review of options for structural design sensitivity analysis. Part 1: Linear systems, Comput. Methods Appl. Mech. Eng., 194, 3213-3243, 2005 · Zbl 1091.74040 · doi:10.1016/j.cma.2005.02.002
[7] Fox, RL; Kapoor, MP, Rates of change of eigenvalues and eigenvectors, AIAA J., 6, 12, 2426-2429, 1968 · Zbl 0181.53003 · doi:10.2514/3.5008
[8] Nelson, RB, Simplified calculation of eigenvector derivatives, AIAA J., 14, 9, 1201-1205, 1976 · Zbl 0342.65021 · doi:10.2514/3.7211
[9] Ojalvo, IU, Efficient computation of modal sensitivities for systems with repeated frequencies, AIAA J., 26, 3, 361-366, 1988 · Zbl 0682.73043 · doi:10.2514/3.9897
[10] Mills-Curran, WC, Calculation of eigenvector derivatives for structures with repeated eigenvalues, AIAA J., 26, 7, 867-871, 1988 · Zbl 0665.73069 · doi:10.2514/3.9980
[11] Dailey, RL, Eigenvector derivatives with repeated eigenvalues, AIAA J., 27, 4, 486-491, 1989 · doi:10.2514/3.10137
[12] Tang, J.; Wang, WL, On calculation of sensitivity for non-defective eigenproblems with repeated roots, J. Sound Vib., 225, 4, 611-631, 1999 · Zbl 1235.70011 · doi:10.1006/jsvi.1999.2098
[13] Xu, Z.; Wu, B., Derivatives of complex eigenvectors with distinct and repeated eigenvalues, Int. J. Numer. Methods Eng., 75, 8, 945-963, 2008 · Zbl 1195.74069 · doi:10.1002/nme.2280
[14] Long, XY; Jiang, C.; Han, X., New method for eigenvector-sensitivity analysis with repeated eigenvalues and eigenvalue derivatives, AIAA J., 53, 5, 1226-1235, 2015 · doi:10.2514/1.J053362
[15] Shaw, J.; Jayasuriya, S., Modal sensitivities for repeated eigenvalues and eigenvalue derivatives, AIAA J., 30, 3, 850-852, 1992 · Zbl 0774.65019 · doi:10.2514/3.10999
[16] Friswell, MI, The derivatives of repeated eigenvalues and their associated eigenvectors, J. Vib. Acoust., 118, 390-397, 1996 · doi:10.1115/1.2888195
[17] Van Der Aa, NP; Ter Morsche, HG; Mattheij, RM, Computation of eigenvalue and eigenvector derivatives for a general complex-valued eigensystem, Electron. J. Linear Algebra, 16, 300-314, 2007 · Zbl 1145.65027 · doi:10.13001/1081-3810.1203
[18] Adhikari, S.; Friswell, MI, Calculation of eigensolution derivatives for nonviscously damped systems using Nelson’s method, AIAA J., 44, 8, 1799-1806, 2006 · doi:10.2514/1.20049
[19] Lim, KB; Juang, JN, Eigenvector derivatives of repeated eigenvalues using singular value decomposition, J. Guidance., 12, 2, 282-283, 1988 · doi:10.2514/3.20405
[20] Prells, U.; Friswell, MI, Calculating derivatives of repeated and nonrepeated eigenvalues without explicit use of eigenvectors, AIAA J., 38, 8, 1426-1436, 2000 · doi:10.2514/2.1119
[21] Lee, IW; Jung, GH; Lee, JW, Numerical method for sensitivity analysis of eigensystems with non-repeated and repeated eigenvalues, J. Sound Vib., 195, 1, 17-32, 1996 · Zbl 1235.74363 · doi:10.1006/jsvi.1996.9989
[22] Lee, TH, Adjoint method for design sensitivity analysis of multiple eigenvalues and associated eigenvectors, AIAA J., 45, 8, 1998-2004, 2007 · doi:10.2514/10.2514/1.25347
[23] Yoon, GH; Donoso, A.; Bellido, JC; Ruiz, D., Highly efficient general method for sensitivity analysis of eigenvectors with repeated eigenvalues without passing through adjacent eigenvectors, Int. J. Numer. Methods Eng., 121, 20, 4473-4492, 2020 · Zbl 07863227 · doi:10.1002/nme.6442
[24] Lee, IW; Jung, GH, An efficient algebraic method for the computation of natural frequency and mode shape sensitivies—Part I, Distinct. Nat. Freq. Comput. Struct., 62, 3, 429-435, 1997 · Zbl 0912.73080 · doi:10.1016/S0045-7949(96)00206-4
[25] Lee, IW; Jung, GH, An efficient algebraic method for the computation of natural frequency and mode shape sensitivities—Part II, Multiple Nat. Freq. Comput. Struct., 62, 3, 437-443, 1997 · Zbl 0912.73080 · doi:10.1016/S0045-7949(96)00207-6
[26] Wu, B.; Xu, Z.; Li, Z., A note on computing eigenvector derivatives with distinct and repeated eigenvalues, Commun. Numer. Methods Eng., 23, 3, 241-251, 2007 · Zbl 1111.65034 · doi:10.1002/cnm.895
[27] Wang, P.; Yang, X., Eigensensitivity of damped system with defective multiple eigenvalues, J. Vibroeng., 18, 4, 2331-2342, 2016 · doi:10.21595/jve.2016.15791
[28] Xie, HQ; Dai, H., Derivatives of repeated eigenvalues and corresponding eigenvectors of damped systems, Appl. Math. Mech. Engl., 28, 6, 837-845, 2007 · Zbl 1231.65068 · doi:10.1007/s10483-007-0614-4
[29] Xie, H.; Dai, H., Calculation of derivatives of multiple eigenpairs of unsymmetrical quadratic eigenvalue problems, Int. J. Comput. Math., 85, 12, 1815-1831, 2008 · Zbl 1158.65026 · doi:10.1080/00207160701581525
[30] Choi, KM; Cho, SW; Ko, MG; Lee, IW, Higher order eigensensitivity analysis of damped systems with repeated eigenvalues, Comput. Struct., 82, 63-69, 2004 · doi:10.1016/j.compstruc.2003.08.001
[31] Li, L.; Hu, Y.; Wang, X., A parallel way for computing eigenvector sensitivity of asymmetric damped systems with distinct and repeated eigenvalues, Mech. Syst. Signal Process., 30, 30-77, 2012 · doi:10.1016/j.ymssp.2012.01.008
[32] Wang, P.; Dai, H., Calculation of eigenpair derivatives for asymmetric damped systems with distinct and repeated eigenvalues, Int. J. Numer. Methods Eng., 103, 7, 501-515, 2015 · Zbl 1352.65122 · doi:10.1002/nme.4901
[33] Wang, P.; Wu, J.; Yang, X., An improved method for computing eigenpair derivatives of damped system, Math. Probl. Eng., 2018, 1-8, 2018 · Zbl 1427.70047 · doi:10.1155/2018/8050132
[34] Wang, P.; Dai, H., Eigensensitivity analysis for symmetric nonviscously damped systems with repeated eigenvalues, J. Vibroeng., 16, 8, 4065-4076, 2014
[35] Li, L.; Hu, Y.; Wang, X., A study on design sensitivity analysis for general nonlinear eigenproblems, Mech. Syst. Signal Process., 34, 88-105, 2013 · doi:10.1016/j.ymssp.2012.08.011
[36] Li, L.; Hu, Y.; Wang, X.; Ling, L., Eigensensitivity analysis of damped systems with distinct and repeated eigenvalues, Finite Elem. Anal. Des., 72, 21-34, 2013 · Zbl 1302.65247 · doi:10.1016/j.finel.2013.04.006
[37] Phuor, T.; Yoon, G., Eigensensitivity of damped system with distinct and repeated eigenvalues by chain rule, Int. J. Numer. Methods Eng., 124, 4687-4717, 2023 · Zbl 1530.70020 · doi:10.1002/nme.7331
[38] Ruiz, D.; Bellido, JC; Donoso, A., Eigenvector sensitivity when tracking modes with repeated eigenvalues, Comput. Methods Appl. Mech. Eng., 326, 338-357, 2017 · Zbl 1439.74254 · doi:10.1016/j.cma.2017.07.031
[39] Choi, KK; Haug, EJ; Lam, HL, A numerical method for distributed parameter structural optimization problems with repeated eigenvalues, J. Struct. Mech., 10, 2, 191-207, 1982 · doi:10.1080/03601218208907410
[40] Gomes, HM, Truss optimization with dynamic constraints using a particle swarm algorithm, Expert Syst. Appl., 38, 957-968, 2011 · doi:10.1016/j.eswa.2010.07.086
[41] Zuo, W.; Xu, T.; Zhang, H.; Xu, T., Fast structural optimization with frequency constraints by genetic algorithm using adaptive eigenvalue reanalysis methods, Struct. Multidisc. Optim., 43, 799-810, 2010 · doi:10.1007/s00158-010-0610-y
[42] Zhou, P.; Du, J.; Lü, Z., Topology optimization of freely vibrating continuum structures based on nonsmooth optimization, Struct. Multidisc. Optim., 56, 603-618, 2017 · doi:10.1007/s00158-017-1677-5
[43] Wagner, N.; Adhikari, S., Symmetric state-space method for a class of nonviscously damped systems, AIAA J., 4195, 951-956, 2003 · doi:10.2514/2.2032
[44] Adhikari, S.; Wagner, N., Analysis of asymmetric nonviscously damped linear dynamic systems, J. Appl. Mech., 70, 6, 885-893, 2003 · Zbl 1110.74309 · doi:10.1115/1.1601251
[45] Biot, MA, Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena, J. Appl. Phys., 25, 11, 1385-1391, 1954 · Zbl 0057.19103 · doi:10.1063/1.1721573
[46] Biot, MA, Variational principles in irreversible thermodynamics with application to viscoelasticity, Phys. Rev., 97, 6, 1463-1469, 1955 · Zbl 0065.42003 · doi:10.1103/PhysRev.97.1463
[47] Golla, DF; Hughes, PC, Dynamics of viscoelastic structures—a time domain finite element formulation, J. Appl. Mech., 52, 4, 897-906, 1985 · Zbl 0587.73110 · doi:10.1115/1.3169166
[48] McTavish, DJ; Hughes, PC, Modeling of linear viscoelastic space structures, J. Vib. Acoust., 115, 1, 103-110, 1993 · doi:10.1115/1.2930302
[49] Lesieutre, GA, Finite element modeling of frequency-dependent material properties using augmented thermodynamic fields, AIAA J., 13, 6, 1040-1050, 1990 · Zbl 0751.93045 · doi:10.2514/3.20577
[50] Lesieutre, GA, Finite elements for dynamic modeling of uniaxial rods with frequency-dependent material properties, Int. J. Solids Struct., 29, 12, 1567-1579, 1992 · Zbl 0825.73849 · doi:10.1016/0020-7683(92)90134-F
[51] Lewandowski, R.; Bartkowiak, A.; Maciejewski, H., Dynamic analysis of frames with viscoelastic dampers: a comparison of dampers models, Struct. Eng. Mech., 41, 1, 113-137, 2012 · doi:10.12989/sem.2012.41.1.113
[52] Park, SW, Analytical modeling of viscoelastic dampers for structural and vibration control, Int. J. Solids Struct., 38, 44-45, 8065-8092, 2001 · Zbl 1090.74636 · doi:10.1016/S0020-7683(01)00026-9
[53] Chang, TS; Singh, MP, Seismic analysis of structures with a fractional derivative model of viscoelastic dampers, Earthq. Eng. Eng. Vib., 1, 251-260, 2002 · doi:10.1007/s11803-002-0070-5
[54] Adhikari, S.; Pascual, B., Eigenvalues of linear viscoelastic systems, J. Sound Vib., 325, 1000-1011, 2009 · doi:10.1016/j.jsv.2009.04.008
[55] Li, L.; Hu, Y., State-Space method for viscoelastic systems involving general damping model, AIAA J., 54, 10, 3290-3295, 2016 · doi:10.2514/1.J054180
[56] Lewandowski, R.; Łasecka-Plura, M., Design sensitivity analysis of structures with viscoelastic dampers, Comput. Struct., 164, 95-107, 2016 · doi:10.1016/j.compstruc.2015.11.011
[57] Łasecka-Plura, M., A comparative study of the sensitivity analysis for systems with viscoelastic elements, Arch Mech., 70, 1, 5-25, 2023 · doi:10.24425/ame.2022.144077
[58] Łasecka-Plura, M.; Lewandowski, R., Dynamic characteristics and frequency response function for frame with dampers with uncertain design parameters, Mech. Based Des. Struct. Mach., 45, 3, 286-312, 2017 · doi:10.1080/15397734.2017.1298043
[59] Martinez-Agirre, M.; Elajabarrieta, MJ, Higher order eigensensitivities-based numerical method for the harmonic analysis of viscoelastically damped structures, Int. J. Numer. Meth. Eng., 88, 12, 1280-1296, 2011 · Zbl 1242.74030 · doi:10.1002/nme.3222
[60] Pawlak, Z.; Lewandowski, R., The continuation method for the eigenvalue problem of structures with viscoelastic dampers, Comput. Struct., 125, 53-61, 2013 · doi:10.1016/j.compstruc.2013.04.021
[61] Lewandowski, R.; Baum, M., Dynamic characteristics of multilayered beams with viscoelastic layers described by the fractional Zener model, Arch. Appl. Mech., 85, 12, 1793-1814, 2015 · Zbl 1341.74099 · doi:10.1007/s00419-015-1019-2
[62] Lewandowski, R.; Litewka, P.; Wielentejczyk, P., Free vibrations of laminate plates with viscoelastic layers using the refined zig-zag theory—Part 1, Theor. Backgr. Compos. Struct., 278, 2021 · doi:10.1016/j.compstruct.2021.114547
[63] Kamiński, M.; Lenartowicz, A.; Guminiak, M.; Przychodzki, M., Selected problems of random free vibrations of rectangular thin plates with viscoelastic dampers, Materials., 15, 9, 6811, 2022 · doi:10.3390/ma15196811
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.