×

Self-affine tiles generated by a finite number of matrices. (English) Zbl 1538.28024

Summary: We study self-affine tiles generated by iterated function systems consisting of affine mappings whose linear parts are defined by different matrices. We obtain an interior theorem for these tiles. We prove a tiling theorem by showing that for such a self-affine tile, there always exists a tiling set. We also obtain a more complete interior theorem for reptiles, which are tiles obtained when the matrices in the iterated function system are similarities. Our results extend some of the classical ones by J. C. Lagarias and Y. Wang [Adv. Math. 121, No. 1, 21–49 (1996; Zbl 0893.52013)], where the IFS maps are defined by a single matrix.

MSC:

28A80 Fractals
52C22 Tilings in \(n\) dimensions (aspects of discrete geometry)
05B45 Combinatorial aspects of tessellation and tiling problems

Citations:

Zbl 0893.52013
Full Text: DOI

References:

[1] Akiyama, Sh; Loridant, B., Boundary parametrization of planar self-affine tiles with collinear digit set, Sci. China Math., 53, 9, 2173-2194 (2010) · Zbl 1209.28004 · doi:10.1007/s11425-010-4096-2
[2] Akiyama, Sh; Loridant, B., Boundary parametrization of self-affine tiles, J. Math. Soc. Jpn., 63, 2, 525-579 (2011) · Zbl 1226.28006 · doi:10.2969/jmsj/06320525
[3] Ando, T.; Shih, M-H, Simultaneous contractibility, SIAM J. Matrix Anal. Appl., 19, 2, 487-498 (1998) · Zbl 0912.15033 · doi:10.1137/S0895479897318812
[4] Bandt, Ch.: Self-similar sets. V. Integer matrices and fractal tilings of \({\bf R}^n\). Proc. Am. Math. Soc. 112(2), 549-562 (1991) · Zbl 0743.58027
[5] Bandt, Ch; Mekhontsev, D.; Tetenov, A., A single fractal pinwheel tile, Proc. Am. Math. Soc., 146, 3, 1271-1285 (2018) · Zbl 1382.52018 · doi:10.1090/proc/13774
[6] Bandt, Ch; Wang, Y., Disk-like self-affine tiles in \({\mathbb{R} }^2\), Discrete Comput. Geom., 26, 4, 591-601 (2001) · Zbl 1020.52018 · doi:10.1007/s00454-001-0034-y
[7] Deng, Q-R; Lau, K-S, Connectedness of a class of planar self-affine tiles, J. Math. Anal. Appl., 380, 2, 493-500 (2011) · Zbl 1219.52011 · doi:10.1016/j.jmaa.2011.03.043
[8] Duan, Sh-J; Liu, D.; Tang, T-M, A planar integral self-affine tile with Cantor set intersections with its neighbors, Integers, 9, 3, 227-237 (2009) · Zbl 1177.28021 · doi:10.1515/INTEG.2009.022
[9] Falconer, K., Fractal Geometry (2003), Hoboken: Wiley, Hoboken · Zbl 1060.28005 · doi:10.1002/0470013850
[10] Flaherty, T.; Wang, Y., Haar-type multiwavelet bases and self-affine multi-tiles, Asian J. Math., 3, 2, 387-400 (1999) · Zbl 0967.42025 · doi:10.4310/AJM.1999.v3.n2.a7
[11] Gmainer, J.; Thuswaldner, JM, On disk-like self-affine tiles arising from polyominoes, Methods Appl. Anal., 13, 4, 351-371 (2006) · Zbl 1140.28300 · doi:10.4310/MAA.2006.v13.n4.a3
[12] Gröchenig, K.; Haas, A.; Raugi, A., Self-affine tilings with several tiles, I. Appl. Comput. Harmon. Anal., 7, 2, 211-238 (1999) · Zbl 1008.52019 · doi:10.1006/acha.1999.0268
[13] Guglielmi, N.; Protasov, V., Exact computation of joint spectral characteristics of linear operators, Found. Comput. Math., 13, 1, 37-97 (2013) · Zbl 1273.65054 · doi:10.1007/s10208-012-9121-0
[14] He, X-G; Kirat, I.; Lau, K-S, Height reducing property of polynomials and self-affine tiles, Geom. Dedicata, 152, 153-164 (2011) · Zbl 1228.11161 · doi:10.1007/s10711-010-9550-3
[15] Hutchinson, JE, Fractals and self-similarity, Indiana Univ. Math. J., 30, 5, 713-747 (1981) · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055
[16] Jungers, R.: The Joint Spectral Radius: Theory and Applications. Lecture Notes in Control and Information Sciences, vol. 385. Springer, Berlin (2009)
[17] Kenyon, R.: Self-replicating tilings. In: Symbolic Dynamics and its Applications (New Haven 1991). Contemp. Math., vol. 135, pp. 239-263. American Mathematical Society, Providence (1992) · Zbl 0770.52013
[18] Kenyon, R.; Li, J.; Strichartz, RS; Wang, Y., Geometry of self-affine tiles, II. Indiana Univ. Math. J., 48, 1, 25-42 (1999) · Zbl 0938.52018
[19] Kirat, I., Disk-like tiles and self-affine curves with noncollinear digits, Math. Comp., 79, 270, 1019-1045 (2010) · Zbl 1201.37028 · doi:10.1090/S0025-5718-09-02301-1
[20] Kirat, I.; Lau, K-S, On the connectedness of self-affine tiles, J. Lond. Math. Soc., 62, 1, 291-304 (2000) · Zbl 0986.37016 · doi:10.1112/S002461070000106X
[21] Kirat, I.; Lau, K-S, Classification of integral expanding matrices and self-affine tiles, Discrete Comput. Geom., 28, 1, 49-73 (2002) · Zbl 1020.37003 · doi:10.1007/s00454-001-0091-2
[22] Kirat, I.; Lau, K-S; Rao, H., Expanding polynomials and connectedness of self-affine tiles, Discrete Comput. Geom., 31, 2, 275-286 (2004) · Zbl 1054.52012 · doi:10.1007/s00454-003-2879-8
[23] Lagarias, J.C., Wang, Y.: Self-affine tiles in \(\mathbb{ R}^n\). Adv. Math. 121(1), 21-49 (1996) · Zbl 0893.52013
[24] Lagarias, J.C., Wang, Y.: Integral self-affine tiles in \(\mathbb{ R}^n\). I. Standard and nonstandard digit sets. J. Lond. Math. Soc. 54(1), 161-179 (1996) · Zbl 0893.52014
[25] Lagarias, J.C., Wang, Y.: Integral self-affine tiles in \(\mathbb{ R}^n\). II. Lattice tilings. J. Fourier Anal. Appl. 3(1), 83-102 (1997) · Zbl 0893.52015
[26] Lau, K-S; Ngai, S-M, Multifractal measures and a weak separation condition, Adv. Math., 141, 1, 45-96 (1999) · Zbl 0929.28007 · doi:10.1006/aima.1998.1773
[27] Leung, K-Sh; Lau, K-S, Disklikeness of planar self-affine tiles, Trans. Am. Math. Soc., 359, 7, 3337-3355 (2007) · Zbl 1118.52023 · doi:10.1090/S0002-9947-07-04106-2
[28] Leung, K-Sh; Luo, JJ, Boundaries of disk-like self-affine tiles, Discrete Comput. Geom., 50, 1, 194-218 (2013) · Zbl 1275.52018 · doi:10.1007/s00454-013-9505-1
[29] Li, J-L, Digit sets of integral self-affine tiles with prime determinant, Studia Math., 177, 2, 183-194 (2006) · Zbl 1123.28009 · doi:10.4064/sm177-2-7
[30] Liu, J.; Ngai, S-M; Tao, J., Connectedness of a class of two-dimensional self-affine tiles associated with triangular matrices, J. Math. Anal. Appl., 435, 2, 1499-1513 (2016) · Zbl 1330.52023 · doi:10.1016/j.jmaa.2015.10.081
[31] Luo, J.; Thuswaldner, JM, On the fundamental group of self-affine plane tiles, Ann. Inst. Fourier (Grenoble), 56, 7, 2493-2524 (2006) · Zbl 1119.52012 · doi:10.5802/aif.2247
[32] Ngai, S-M; Tang, T-M, Topology of connected self-similar tiles in the plane with disconnected interiors, Topol. Appl., 150, 1-3, 139-155 (2005) · Zbl 1077.37019 · doi:10.1016/j.topol.2004.11.009
[33] Protasov, V.Yu.: Extremal \(L_p\)-norms of linear operators and self-similar functions. Linear Algebra Appl. 428(10), 2339-2356 (2008) · Zbl 1147.15023
[34] Rao, H.; Wen, Z-Y, A class of self-similar fractals with overlap structure, Adv. Appl. Math., 20, 1, 50-72 (1998) · Zbl 0894.28003 · doi:10.1006/aama.1997.0560
[35] Rao, H.; Zhang, L., Integral self-affine tiles of Bandt’s model, Acta Math. Appl. Sin. Engl. Ser., 26, 1, 169-176 (2010) · Zbl 1192.37023 · doi:10.1007/s10255-009-9038-9
[36] Rota, G-C; Strang, G., A note on the joint spectral radius, Nederl. Akad. Wetensch. Proc. Ser. A, 63, 379-381 (1960) · Zbl 0095.09701 · doi:10.1016/S1385-7258(60)50046-1
[37] Sadahiro, T., Sakurai, K.: Construction of boundaries of tiles in non-periodic self-affine tilings and their colorings. IPSJ J. 42(6), 1610-1622 (2001). (in Japanese)
[38] Schief, A., Separation properties for self-similar sets, Proc. Am. Math. Soc., 122, 1, 111-115 (1994) · Zbl 0807.28005 · doi:10.1090/S0002-9939-1994-1191872-1
[39] Sinai, Ya.G.: Construction of Markov partitions. Funkcional. Anal. i Prilozhen. 2(3), 70-80 (1968). (in Russian) · Zbl 0194.22602
[40] Steiner, W.; Thuswaldner, JM, Rational self-affine tiles, Trans. Am. Math. Soc., 367, 11, 7863-7894 (2015) · Zbl 1329.52019 · doi:10.1090/S0002-9947-2015-06264-3
[41] Strichartz, RS, Wavelets and self-affine tilings, Constr. Approx., 9, 2-3, 327-346 (1993) · Zbl 0813.42021 · doi:10.1007/BF01198010
[42] Strichartz, RS; Wang, Y., Geometry of self-affine tiles, I. Indiana Univ. Math. J., 48, 1, 1-23 (1999) · Zbl 0938.52017
[43] Wen, ZY, Mathematical Foundations of Fractal Geometry (2000), Shanghai: Shanghai Scientific and Technological Education Publishing House, Shanghai
[44] Zerner, MPW, Weak separation properties for self-similar sets, Proc. Am. Math. Soc., 124, 11, 3529-3539 (1996) · Zbl 0874.54025 · doi:10.1090/S0002-9939-96-03527-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.