×

A new first kind boundary integral formulation for the Dirichlet-to-Neumann map in 2D. (English) Zbl 1030.65122

The author develops a new first kind boundary integral formulation for the Dirichlet-to-Neumann map in 2 D. A number of theorems and illustrations is presented for the theoretical foundation. Finally, an efficient FFP-based preconditioner is used for decomposition. Its application is also indicated in the area of fluid dynamics.

MSC:

65N38 Boundary element methods for boundary value problems involving PDEs
65F10 Iterative numerical methods for linear systems
65F35 Numerical computation of matrix norms, conditioning, scaling
35J25 Boundary value problems for second-order elliptic equations

Software:

Fasthenry
Full Text: DOI

References:

[1] Beale, J. T.; Hou, T. Y.; Lowengrub, J., Stability of boundary integral methods for water waves, (Nonlinear Evolutionary Partial Differential Equations (Beijing, 1993). Nonlinear Evolutionary Partial Differential Equations (Beijing, 1993), AMS/IP Stud. Adv. Math., vol. 3 (1997), American Mathematical Society: American Mathematical Society Providence, RJ), pp. 1-7-127
[2] Beale, J. T.; Hou, T. Y.; Lowengrub, J. S., Convergence of a boundary integral method for water waves, SIAM J. Numer. Anal., 33, 5, 1797-1843 (1996) · Zbl 0858.76046
[3] Coifman, R. R.; Meyer, Y., Nonlinear harmonic analysis and analytic dependence, (Trèves, F., Pseudodifferential Operators and Applications. Pseudodifferential Operators and Applications, Proceedings of Symposia in Pure Mathematics, vol. 43 (1985), American Mathematical Society: American Mathematical Society Providence, RJ), 71-79 · Zbl 0587.35004
[4] Cordes, H. O., The Technique of Pseudodifferential Operators. The Technique of Pseudodifferential Operators, London Mathematical Society Lecture Note Series, vol. 202 (1995), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0828.35145
[5] Craig, W.; Sulem, S., Numerical simulation of gravity waves, J. Comput. Phys., 108, 1, 73-83 (1993) · Zbl 0778.76072
[6] Funken, S. A.; Stephan, E. P., The bpx preconditioner for the single layer potential operator, Appl. Anal., 67, 327-340 (1997) · Zbl 0892.65071
[7] Givoli, D., Numerical Methods for Problems in Infinite Domains (1992), Elsevier: Elsevier Amsterdam · Zbl 0788.76001
[8] Hou, T. Y.; Lowengrub, J. S.; Shelley, M. J., Boundary integral methods for multicomponent fluids and multiphase materials, J. Comput. Phys., 169, 3, 302-362 (2001) · Zbl 1046.76029
[9] John, F., Partial Differential Equations (1982), Springer: Springer New York · Zbl 0472.35001
[10] Kamon, M.; Tsuk, M. J.; White, J., Fasthenri: a multipole-accelerated 3-d inductance extraction program, IEEE Trans. Microw. Theory and Techniques (1994)
[11] Kirsch, A., An Introduction to the Mathematical Theory of Inverse Problems. An Introduction to the Mathematical Theory of Inverse Problems, Applied Mathematical Sciences, vol. 120 (1996), Springer: Springer New York · Zbl 0865.35004
[12] McKenney, A.; Greengard, L.; Mayo, A., A fast poisson solver for complex geometries, J. Comput. Phys., 118, 2, 348-355 (1995) · Zbl 0823.65115
[13] Milder, D. M., An improved formalism for electromagnetic scattering from a perfectly conducting rough surface, Radio Sci., 31, 6, 1369 (1996)
[14] Nicholls, D. P.; Reitich, F., Stability of high-order perturbative methods for the computation of Dirichlet-Neumann operators, J. Comput. Phys., 170, 276-298 (2001) · Zbl 0983.65115
[15] Sidi, A.; Israeli, M., Quadrature methods for periodic singular and weakly singular Fredholm integral equations, J. Sci. Comput., 3, 201 (1988) · Zbl 0662.65122
[16] Taylor, M. E., Tools for PDE. Tools for PDE, Mathematical Surveys and Monographs, vol. 81 (2000), American Mathematical Society: American Mathematical Society Providence, RJ · Zbl 0963.35211
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.