×

The distribution of the area under a Bessel excursion and its moments. (English) Zbl 1302.82051

Summary: A Bessel excursion is a Bessel process that begins at the origin and first returns there at some given time \(T\). We study the distribution of the area under such an excursion, which recently found application in the context of laser cooling. The area \(A\) scales with the time as \(A\sim T^{3/2}\), independent of the dimension, \(d\), but the functional form of the distribution does depend on \(d\). We demonstrate that for \(d=1\), the distribution reduces as expected to the distribution for the area under a Brownian excursion, known as the Airy distribution, deriving a new expression for the Airy distribution in the process. We show that the distribution is symmetric in \(d-2\), with nonanalytic behavior at \(d=2\). We calculate the first and second moments of the distribution, as well as a particular fractional moment. We also analyze the analytic continuation from \(d<2\) to \(d>2\). In the limit where \(d\to 4\) from below, this analytically continued distribution is described by a one-sided Lévy \(\alpha\)-stable distribution with index \(2/3\) and a scale factor proportional to \([(4-d)T]^{3/2}\).

MSC:

82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
60J65 Brownian motion

References:

[1] Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. National Bureau of Standards, Washington (1964) · Zbl 0171.38503
[2] Barkai, E., Aghion E., Kessler, D.A.: From the area under the Bessel excursion to anomalous diffusion of cold atoms. Phys. Rev. X 4(2), 021036 (2014)
[3] Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers I. Springer, New York (1999) · Zbl 0938.34001 · doi:10.1007/978-1-4757-3069-2
[4] Carmi, S., Barkai, E.: Fractional Feynman-Kac equation for weak ergodicity breaking. Phys. Rev. E 84(6), 061104 (2011) · doi:10.1103/PhysRevE.84.061104
[5] Crandall, R.E.: On the quantum zeta function. J. Phys. A 29(21), 6795-6816 (1996) · Zbl 0905.58040 · doi:10.1088/0305-4470/29/21/014
[6] Darling, D.A.: On the supremum of a certain Gaussian process. Ann. Probab. 11(3), 803-806 (1983) · Zbl 0515.60044 · doi:10.1214/aop/1176993527
[7] Flajolet, R., Louchard, G.: Analytic variations on the airy distribution. Algorithmica 31(3), 361-377 (2001) · Zbl 1064.68065 · doi:10.1007/s00453-001-0056-0
[8] Hu, Y., Shi, Z.: Extreme lengths in Brownian and Bessel excursions. Bernoulli 3(4), 387-402 (1997) · Zbl 0907.60036 · doi:10.2307/3318455
[9] Itô, K., McKean Jr, H.P.: Diffusion Processes and their Sample Paths, Grundlehren der mathematischen Wissenschaften, vol. 125. Springer, Berlin (1974) · Zbl 0285.60063
[10] Janson, S.: Brownian excursion area, Wright’s constants in graph enumeration, and other Brownian areas. Probab. Surv. 4, 80-145 (2007) · Zbl 1189.60147
[11] Kac, M.: On distributions of certain Wiener functionals. Trans. Am. Math. Soc. 65(1), 1-13 (1949) · Zbl 0032.03501 · doi:10.1090/S0002-9947-1949-0027960-X
[12] Louchard, G.: Kac’s formula, Lévy’s local time and Brownian excursion. J. Appl. Probab. 21, 479-499 (1984) · Zbl 0551.60086 · doi:10.2307/3213611
[13] Majumdar, S.N., Comtet, A.: Airy distribution function: from the area under a Brownian excursion to the maximal height of fluctuating interfaces. J. Stat. Phys. 119(3-4), 777-826 (2005) · Zbl 1170.82370 · doi:10.1007/s10955-005-3022-4
[14] Martin, E., Behn, U., Germano, G.: First-passage and first-exit times of a Bessel-like stochastic process. Phys. Rev. E 83(5), 051115 (2011) · doi:10.1103/PhysRevE.83.051115
[15] Penson, K.A., Górska, K.: Exact and explicit probability densities for one-sided Lévy stable distributions. Phys. Rev. Lett. 105(21), 210604 (2010) · doi:10.1103/PhysRevLett.105.210604
[16] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn., Grundlehren der mathematischen Wissenschaften, vol. 293. Springer, Berlin (1999). · Zbl 0917.60006
[17] Takács, L.: A Bernoulli excursion and its various applications. Adv. Appl. Probab. 23(3), 557-585 (1991) · Zbl 0738.60069 · doi:10.2307/1427622
[18] Zolotarev, V.M.: Expression of the density of a stable distribution with exponent \[\alpha\] α greater than one by means of a frequency with exponent \[1/\alpha 1\]/α. Selected Translations in Mathematical Statistics and Probability 1, 163-167 [Translation of, Dokl. Akad. Nauk SSSR 98, 735-738 (1954)] (1961). · Zbl 0112.10104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.