×

Implementation of subloading surface model for hyperelastoplasticity with nonlinear kinematic/isotropic hardening based on reference and intermediate configurations. (English) Zbl 1525.74028

MSC:

74B99 Elastic materials

Software:

HYPLAS
Full Text: DOI

References:

[1] Metzger, D.; Dubey, R., Corotational rates in constitutive modeling of elastic-plastic deformation, Int. J. Plast., 3, 341-368 (1987) · Zbl 0626.73030
[2] Nemat-Nasser, S., Certain basic issues in finite-deformation continuum plasticity, Meccanica, 25, 223-229 (1990) · Zbl 0724.73087
[3] Ghavam, K.; Naghdabadi, R., Hardening materials modeling in finite elastic-plastic deformations based on the stretch tensor decomposition, Mater. Des., 29, 161-172 (2008)
[4] Heidari, M.; Vafai, A.; Desai, C., An Eulerian multiplicative constitutive model of finite elastoplasticity, Eur. J. Mech. A. Solids, 28, 1088-1097 (2009) · Zbl 1176.74035
[5] Eshraghi, A.; Jahed, H.; Lambert, S., A Lagrangian model for hardening behaviour of materials at finite deformation based on the right plastic stretch tensor, Mater. Des., 31, 2342-2354 (2010)
[6] Oldroyd, J. G., On the formulation of rheological equations of state, Proc. Roy. Soc. London A, 200, 523-541 (1950) · Zbl 1157.76305
[7] Khan, A. S.; Huang, S., Continuum Theory of Plasticity (1995), John Wiley & Sons: John Wiley & Sons New York · Zbl 0856.73002
[8] Eshraghi, A.; Papoulia, K. D.; Jahed, H., Eulerian framework for inelasticity based on the Jaumann rate and a hyperelastic constitutive relation—Part I: Rate-form hyperelasticity, J. Appl. Mech., 80, Article 021027 pp. (2013)
[9] Eshraghi, A.; Jahed, H.; Papoulia, K. D., Eulerian framework for inelasticity based on the Jaumann rate and a hyperelastic constitutive relation—Part II: finite strain elastoplasticity, J. Appl. Mech., 80, Article 021028 pp. (2013)
[10] Jiao, Y.; Fish, J., Is an additive decomposition of a rate of deformation and objective stress rates passé?, Comput. Methods Appl. Mech. Eng., 327, 196-225 (2017) · Zbl 1439.74079
[11] Jiao, Y.; Fish, J., On the equivalence between the multiplicative hyper-elasto-plasticity and the additive hypo-elasto-plasticity based on the modified kinetic logarithmic stress rate, Comput. Methods Appl. Mech. Eng., 340, 824-863 (2018) · Zbl 1440.74083
[12] Weber, G.; Anand, L., Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids, Comput. Methods Appl. Mech. Eng., 79, 173-202 (1990) · Zbl 0731.73031
[13] Dettmer, W.; Reese, S., On the theoretical and numerical modelling of Armstrong-Frederick kinematic hardening in the finite strain regime, Comput. Methods Appl. Mech. Eng., 193, 87-116 (2004) · Zbl 1063.74020
[14] Håkansson, P.; Wallin, M.; Ristinmaa, M., Comparison of isotropic hardening and kinematic hardening in thermoplasticity, Int. J. Plast., 21, 1435-1460 (2005) · Zbl 1229.74027
[15] Vladimirov, I. N.; Pietryga, M. P.; Reese, S., On the modelling of non-linear kinematic hardening at finite strains with application to springback—Comparison of time integration algorithms, Int. J. Numer. Methods Eng., 75, 1-28 (2008) · Zbl 1195.74019
[16] Henann, D. L.; Anand, L., A large deformation theory for rate-dependent elastic-plastic materials with combined isotropic and kinematic hardening, Int. J. Plast., 25, 1833-1878 (2009)
[17] Arghavani, J.; Auricchio, F.; Naghdabadi, R., A finite strain kinematic hardening constitutive model based on Hencky strain: general framework, solution algorithm and application to shape memory alloys, Int. J. Plast., 27, 940-961 (2011) · Zbl 1426.74065
[18] Brepols, T.; Vladimirov, I. N.; Reese, S., Numerical comparison of isotropic hypo-and hyperelastic-based plasticity models with application to industrial forming processes, Int. J. Plast., 63, 18-48 (2014)
[19] Simo, J.; Ortiz, M., A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations, Comput. Methods Appl. Mech. Eng., 49, 221-245 (1985) · Zbl 0566.73035
[20] Simo, J., On the computational significance of the intermediate configuration and hyperelastic stress relations in finite deformation elastoplasticity, Mech. Mater., 4, 439-451 (1985)
[21] Menzel, A.; Steinmann, P., On the spatial formulation of anisotropic multiplicative elasto-plasticity, Comput. Methods Appl. Mech. Eng., 192, 3431-3470 (2003) · Zbl 1054.74533
[22] Yamakawa, Y.; Hashiguchi, K.; Ikeda, K., Implicit stress-update algorithm for isotropic Cam-clay model based on the subloading surface concept at finite strains, Int. J. Plast., 26, 634-658 (2010) · Zbl 1441.74047
[23] de Souza Neto, E. A.; Peric, D.; Owen, D. R., Computational Methods for Plasticity: Theory and Applications (2011), John Wiley & Sons: John Wiley & Sons Chichester
[24] Teeriaho, J.-P., An extension of a shape memory alloy model for large deformations based on an exactly integrable Eulerian rate formulation with changing elastic properties, Int. J. Plast., 43, 153-176 (2013)
[25] Drucker, D. C., Conventional and unconventional plastic response and representation, Appl. Mech. Rev., 41, 151-167 (1988)
[26] Iwan, W., On a class of models for the yielding behavior of continuous and composite systems, J. Appl. Mech., 34, 612-617 (1967)
[27] Mroz, Z., On the description of anisotropic workhardening, J. Mech. Phys. Solids, 15, 163-175 (1967)
[28] Krieg, R. D., A practical two surface plasticity theory, J. Appl. Mech., 42, 641-646 (1975)
[29] Dafalias, Y.; Popov, E., A model of nonlinearly hardening materials for complex loading, Acta Mech., 21, 173-192 (1975) · Zbl 0312.73047
[30] Hashiguchi, K.; Ueno, M., Elastoplastic constitutive laws of granular materials, (Murayama, S.; Schofield, A. N., Constitutive Equations of Soils, Proc. 9th Int. Conf. Soil Mech. Found. Eng., Special Series 9. Constitutive Equations of Soils, Proc. 9th Int. Conf. Soil Mech. Found. Eng., Special Series 9, Tokyo (1977), JSSMFE), 73-82
[31] Hashiguchi, K., Constitutive equations of elastoplastic materials with elastic-plastic transition, J. Appl. Mech., 7, 266-272 (1980) · Zbl 0445.73001
[32] Hashiguchi, K., Subloading surface model in unconventional plasticity, Int. J. Solids Struct., 25, 917-945 (1989) · Zbl 0703.73029
[33] Chaboche, J. L., On some modifications of kinematic hardening to improve the description of ratchetting effects, Int. J. Plast., 7, 661-678 (1991)
[34] Ohno, N.; Wang, J.-D., Kinematic hardening rules with critical state of dynamic recovery, part I: formulation and basic features for ratchetting behavior, Int. J. Plast., 9, 375-390 (1993) · Zbl 0777.73017
[35] Chaboche, J. L., Modeling of ratchetting: evaluation of various approaches, Eur. J. Mech. A. Solids, 13, 501-518 (1994)
[36] McDowell, D., Stress state dependence of cyclic ratchetting behavior of two rail steels, Int. J. Plast., 11, 397-421 (1995)
[37] Bari, S.; Hassan, T., Anatomy of coupled constitutive models for ratcheting simulation, Int. J. Plast., 16, 381-409 (2000) · Zbl 1004.74020
[38] Bari, S.; Hassan, T., Kinematic hardening rules in uncoupled modeling for multiaxial ratcheting simulation, Int. J. Plast., 17, 885-905 (2001) · Zbl 1059.74013
[39] Chen, X.; Jiao, R., Modified kinematic hardening rule for multiaxial ratcheting prediction, Int. J. Plast., 20, 871-898 (2004)
[40] Chen, X.; Jiao, R.; Kim, K. S., On the Ohno-Wang kinematic hardening rules for multiaxial ratcheting modeling of medium carbon steel, Int. J. Plast., 21, 161-184 (2005) · Zbl 1112.74334
[41] Yaguchi, M.; Takahashi, Y., Ratchetting of viscoplastic material with cyclic softening, part 2: application of constitutive models, Int. J. Plast., 21, 835-860 (2005) · Zbl 1112.74346
[42] Yoshida, F.; Uemori, T., A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation, Int. J. Plast., 18, 661-686 (2002) · Zbl 1038.74013
[43] Dafalias, Y. F.; Popov, E. P., Plastic internal variables formalism of cyclic plasticity, J. Appl. Mech., 43, 645-651 (1976) · Zbl 0351.73048
[44] Zhu, Y.; Kang, G.; Kan, Q.; Bruhns, O. T., Logarithmic stress rate based constitutive model for cyclic loading in finite plasticity, Int. J. Plast., 54, 34-55 (2014)
[45] Abdel-Karim, M.; Ohno, N., Kinematic hardening model suitable for ratchetting with steady-state, Int. J. Plast., 16, 225-240 (2000) · Zbl 0977.74503
[46] Zhu, Y.; Poh, L. H., A finite deformation elasto-plastic cyclic constitutive model for ratchetting of metallic materials, Int. J. Mech. Sci., 117, 265-274 (2016)
[47] Mohammadpour, A.; Chakherlou, T., Numerical and experimental study of an interference fitted joint using a large deformation Chaboche type combined isotropic-kinematic hardening law and mortar contact method, Comput. Methods Appl. Mech. Eng., 106, 297-318 (2016)
[48] Zhu, Y.; Kang, G.; Yu, C., A finite cyclic elasto-plastic constitutive model to improve the description of cyclic stress-strain hysteresis loops, Int. J. Plast., 95, 191-215 (2017)
[49] Iguchi, T.; Yamakawa, K.; Hashiguchi, K.; Ikeda, K., Extended subloading surface model based on multiplicative finite strain elastoplasticity framework: constitutive formulation and fully implicit return-mapping scheme, Trans. Jpn. Soc. Mech. Eng., 83, 2017, 1-20 (2017)
[50] Zhang, M.; Montans, F. J., A simple formulation for large-strain cyclic hyperelasto-plasticity using elastic correctors. Theory and algorithmic implementation, Int. J. Plast., 113, 185-217 (2019)
[51] Nguyen, K.; Sanz, M. A.; Montans, F. J., Plane-stress constrained multiplicative hyperelasto-plasticity with nonlinear kinematic hardening. Consistent theory based on elastic corrector rates and algorithmic implementation, Int. J. Plast., 128, Article 102592 pp. (2020)
[52] Hashiguchi, K., Fundamental requirements and formulation of elastoplastic constitutive equations with tangential plasticity, Int. J. Plast., 9, 525-549 (1993) · Zbl 0791.73030
[53] Hashiguchi, K., Mechanical requirements and structures of cyclic plasticity models, Int. J. Plast., 9, 721-748 (1993) · Zbl 0784.73026
[54] Kroner, E., Allgemeine kontinuumstheoreie der versetzungen und eigenspannnungen, Arch. Ration. Mech. Anal., 4, 273-334 (1959) · Zbl 0090.17601
[55] Lee, E.; Liu, D., Finite-strain elastic—plastic theory with application to plane-wave analysis, J. Appl. Phys., 38, 19-27 (1967)
[56] Fox, N., On the continuum theories of dislocations and plasticity, Q. J. Mech. Appl. Math., 21, 67-75 (1968) · Zbl 0155.53601
[57] Lee, E. H., Elastic-plastic deformation at finite strains, J. Appl. Mech., 1-6 (1969) · Zbl 0179.55603
[58] Peirce, D.; Asaro, R.; Needleman, A., An analysis of nonuniform and localized deformation in ductile single crystals, Acta Metall., 30, 1087-1119 (1982)
[59] Peirce, D.; Asaro, R. J.; Needleman, A., Material rate dependence and localized deformation in crystalline solids, Acta Metall., 31, 1951-1976 (1983)
[60] Asaro, R. J., Micromechanics of crystals and polycrystals, Adv. Appl. Mech., 23, 1-115 (1983)
[61] Lion, A., Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models, Int. J. Plast., 16, 469-494 (2000) · Zbl 0996.74022
[62] Tsutsumi, S.; Toyosada, M.; Hashiguchi, K., Extended subloading surface model incorporating elastic limit concept, (Proc. Plasticity ’06, Halifax (2006)), 217-219
[63] Voce, E., A practical strain hardening function, Metallurgia, 51, 219-226 (1955)
[64] Hashiguchi, K., Multiplicative hyperelastic-based plasticity for finite elastoplastic deformation/sliding: A comprehensive review, Arch. Comput. Methods Eng., 26, 597-637 (2019)
[65] Mandel, J., Plasticit´e Classique et Viscoplasticit´e (1972), Springer-Verlag: Springer-Verlag Vienna · Zbl 0285.73018
[66] Ishikawa, H., Constitutive model of plasticity in finite deformation, Int. J. Plast., 15, 299-317 (1999) · Zbl 1016.74012
[67] Thiel, C.; Voss, J.; Martin, R. J.; Neff, P., Shear, pure and simple, Int. J. Non Linear Mech., 112, 57-72 (2019)
[68] Friedelin, J.; Mergheim, J.; Steinmann, P., Observations on additive plasticity in the logarithmic strain space at excessive strains, Int. J. Solids Struct., 239, Article 111416 pp. (2022)
[69] Gabriel, G.; Bathe, K. J., Some computational issues in large strain elasto-plastic analysis, Comput. Struct., 56, 249-267 (1995) · Zbl 0918.73148
[70] Montáns, F. J.; Bathe, K. J., Computational issues in large strain elasto-plasticity: an algorithm for mixed hardening and plastic spin, J. Numer. Methods Eng., 63, 159-196 (2005) · Zbl 1118.74350
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.