×

On the consequences of the adoption of the Zaremba-Jaumann objective stress rate in FEM codes. (English) Zbl 1348.74314

Summary: This paper deals with a particular issue of computational mechanics in main FEM codes nowadays available, i.e. the outcomes of implementations of large strain constitutive models based on the adoption of so-called objective stress rates, in order to satisfy objectivity requirements. The point here is that of directly inquiring whether well-known incoherencies due to the adoption of the Zaremba-Jaumann objective stress rate may manifest themselves when the most used elastic and elastoplastic constitutive models are adopted. The present investigation aims at providing a comprehensive review of the theoretical aspects and at developing an informed knowledge to final users of FEM codes, in terms of exposing which constitutive models and FEM implementations may be affected by Zaremba-Jaumann objective stress rate induced incoherencies. Towards this end, local FEM simple shear tests are explored and clearly show that kinematic cases characterized by a non zero spin may be heavily affected by oscillatory incoherencies, which arise for expected cases, i.e. Cauchy stress responses, but also for other less expected cases, i.e. strain responses, whether they are total, elastic or plastic. Beyond local tests, structural simple shear tests are also performed and show as well that oscillatory incoherencies found in local simple shear tests may heavily influence the overall structural outcomes. A non-secondary target of the paper is that of reviewing the relevant scientific and technical literature about objective stress rates, by critically analyzing correlated issues and proposed solutions, considering scientific contributions spanning over a century, keeping specific attention to the treatment of the Zaremba-Jaumann objective stress rate and to the possible flaws related to its adoption.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74D10 Nonlinear constitutive equations for materials with memory
Full Text: DOI

References:

[1] ANSYS (2011) ANSYS 13.0 documentation. Canonsburg, Pennsylvania, USA · Zbl 0936.74012
[2] Atluri SN (1984) On constitutive relations at finite strain: hypo-elasticity and elasto-plasticity with isotropic or kinematic hardening. Comput Methods Appl Mech Eng 43(2):137-171 · Zbl 0571.73001 · doi:10.1016/0045-7825(84)90002-1
[3] Atluri SN, Cazzani A (1995) Rotations in computational solid mechanics. Arch Comput Methods Eng 2(1):49-138 · doi:10.1007/BF02736189
[4] Backhaus G (1988) On the analysis of kinematic hardening at large plastic deformations. Acta Mech 75(1-4):133-151 · Zbl 0671.73037 · doi:10.1007/BF01174632
[5] Bažant ZP, Vorel J (2013) Energy-conservation error due to use of Green-Naghdi objective stress rate in finite-element codes and its compensation. J Appl Mech 81(2), American Society of Mechanical Engineers (ASME) · Zbl 0732.73033
[6] Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York, ISBN 0-471-98773-5 · Zbl 0959.74001
[7] Benson DJ (1991) Computational methods in Lagrangian and Eulerian hydrocodes. Comput Methods Appl Mech Eng 99(2-3):235-394 · Zbl 0763.73052
[8] Bernstein B (1960) Hypo-elasticity and elasticity. Arch Ration Mech Anal 6(1):89-104 · Zbl 0094.36702 · doi:10.1007/BF00276156
[9] Bigoni D (2012) Nonlinear solid mechanics. Bifurcation theory and material instability, Cambridge University Press, Cambridge, MA, ISBN 978-1-107-02541-7 · Zbl 1269.74003
[10] Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge, MA, ISBN 0-521-57272-X · Zbl 0891.73001
[11] Bruhns OT, Xiao H, Meyers A (1999) Self-consistent Eulerian rate type elasto-plasticity models based upon the logarithmic stress rate. Int J Plast 15(5):479-520 · Zbl 1036.74010 · doi:10.1016/S0749-6419(99)00003-0
[12] Bruhns OT, Xiao H, Meyers A (2001) Large-strain response of isotropic-hardening elastoplasticity with logarithmic rate: Swift effect in torsion. Arch Appl Mech 71(6-7):389-404 · Zbl 1035.74013 · doi:10.1007/s004190000146
[13] Bruhns OT, Xiao H, Meyers A (2003) Some basic issues in traditional Eulerian formulations of finite elastoplasticity. Int J Plast 19(11):2007-2026 · Zbl 1098.74540 · doi:10.1016/S0749-6419(03)00047-0
[14] Casey J, Naghdi PM (1988) On the relationship between the Eulerian and Lagrangian descriptions of finite rigid plasticity. Arch Ration Mech Anal 102(4):351-375 · Zbl 0658.73031 · doi:10.1007/BF00251535
[15] Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive theories. Int J Plast 24(10):1642-1693 · Zbl 1142.74012 · doi:10.1016/j.ijplas.2008.03.009
[16] Çolak ÖÜ (2004) Modeling of large simple shear using a viscoplastic overstress model and classical plasticity model with different objective stress rates. Acta Mech 167(3-4):171-187 · Zbl 1064.74034 · doi:10.1007/s00707-003-0068-8
[17] Cotter BA, Rivlin RS (1955) Tensors associated with time-dependent stress. Q Appl Math 13(2):177-182 · Zbl 0065.39603
[18] Dafalias YF (1983) Corotational rates for kinematic hardening at large plastic deformations. J Appl Mech 50(3):561-565 · Zbl 0524.73047 · doi:10.1115/1.3167091
[19] Dafalias, YF, No article title, The plastic spin. J Appl Mech, 52, 865-871 (1985) · Zbl 0587.73052 · doi:10.1115/1.3169160
[20] Dafalias YF (1998) Plastic spin: necessity or redundancy? Int J Plast 14(9):909-931 · Zbl 0947.74008 · doi:10.1016/S0749-6419(98)00036-9
[21] Dassault Systèmes (2011) Abaqus 6.10 documentation. Providence, Rhode Island, USA
[22] De Souza Neto EA, Perić D, Owen DRJ (2008) Computational methods for plasticity. Theory and applications, Wiley, New York, ISBN 978-0-470-69452-7 · Zbl 0564.73049
[23] Dienes JK (1979) On the analysis of rotation and stress rate in deforming bodies. Acta Mech 32(4):217-232 · Zbl 0414.73005 · doi:10.1007/BF01379008
[24] Dienes JK (1987) A discussion of material rotation and stress rate. Acta Mech 65(1-4):1-11 · Zbl 0603.73045 · doi:10.1007/BF01176868
[25] Durban D (1990) A comparative study of simple shear at finite strains of elastoplastic solids. Q J Mech Appl Math 43(4):449-465 · Zbl 0719.73020 · doi:10.1093/qjmam/43.4.449
[26] Epstein M (2010) The geometrical language of continuum mechanics. Cambridge University Press, Cambridge, MA, ISBN 978-0-521-19855-4 · Zbl 1206.53002
[27] Epstein M, Maugin GA (1996) On the geometrical material structure of anelasticity. Acta Mech 115(1-4):119-131 · Zbl 0856.73008 · doi:10.1007/BF01187433
[28] Eringen AC (1980) Mechanics of continua, 2nd edn, ISBN 0-88275-663-X, first published in 1967, Robert E. Krieger Publishing Company Inc · Zbl 0222.73001
[29] Eterovic AL, Bathe KJ (1990) A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures. Int J Numer Methods Eng 30(6):1099-1114 · Zbl 0714.73035 · doi:10.1002/nme.1620300602
[30] Fish J, Belytschko T (2007) A first course in finite elements. Wiley, New York, ISBN 978-0-470-03580-1 · Zbl 1135.74001
[31] Gabriel G, Bathe KJ (1995) Some computational issues in large strain elasto-plastic analysis. Comput Struct 56(2-3):249-267 · Zbl 0918.73148 · doi:10.1016/0045-7949(95)00019-D
[32] Gadala MS, Wang J (2000) Computational implementation of stress integration in FE analysis of elasto-plastic large deformation problems. Finite Elem Anal Des 35(4):379-396 · Zbl 0980.74061 · doi:10.1016/S0168-874X(00)00003-2
[33] Gambirasio L, Chiodi P, Rizzi E (2010) Analytical and numerical modelling of the Swift effect in elastoplastic torsion. In: Proceedings of the 9th international conference on multiaxial fatigue and fracture (ICMFF9), June 7-9, 2010, University of Parma, Parma, Italy, Proceedings, pp 843-850, ISBN 978-88-95940-31-1, Conference Chairmen: Carpinteri, A., Pook, L.P., Sonsino, C.M · Zbl 1071.74002
[34] Goddard JD, Miller CD (1966) An inverse for the Jaumann derivative and some applications to the rheology of viscoelastic fluids. Rheol Acta 5(3):177-184 · Zbl 0219.76004 · doi:10.1007/BF01982423
[35] Govindjee S (1997) Accuracy and stability for integration of Jaumann stress rate equations in spinning bodies. Eng Comput 14(1):14-30 · Zbl 0983.74553 · doi:10.1108/02644409710157604
[36] Green AE, McInnis BC (1967) Generalized hypo-elasticity. Proc R Soc Edinb Sect A Math Phys Sci 67(3):220-230 · Zbl 0149.43201
[37] Green AE, Naghdi PM (1965) A general theory of an elastic-plastic continuum. Arch Ration Mech Anal 18(4):251-281 · Zbl 0133.17701 · doi:10.1007/BF00251666
[38] Gurtin ME (1981) An introduction to continuum mechanics, monograph in the series Mathematics in Science and Engineering, Number 158, Series Editor Bellman, R., Academic Press Inc, ISBN 0-12-309750-9 · Zbl 0504.73057
[39] Gurtin ME (1983) Topics in finite elasticity, monograph in the series CBMS-NSF regional Conference Series in Applied Mathematics, Number 35, The Society for Industrial and Applied Mathematics
[40] Hashiguchi K (2013) General description of elastoplastic deformation/sliding phenomena of solids in high accuracy and numerical efficiency: subloading surface concept. Arch Comput Methods Eng 20(4):361-417 · Zbl 1349.74012 · doi:10.1007/s11831-013-9089-1
[41] Healy BE, Dodds RH Jr (1992) A large strain plasticity model for implicit finite element analyses. Comput Mech 9(2):95-112 · Zbl 0754.73047 · doi:10.1007/BF00370065
[42] Heckman J, Fish J (2007) Obstacle test for large deformation plasticity problems. Int J Comput Methods Eng Sci Mech 8(6):401-410 · Zbl 1144.74312 · doi:10.1080/15502280701577941
[43] Hill R (1979) Aspects of invariance in solid mechanics. Adv Appl Mech 18:1-75 · Zbl 0475.73026 · doi:10.1016/S0065-2156(08)70264-3
[44] Hill R (1998) The mathematical theory of plasticity, 2nd edn, first published in 1950, monograph in the series Oxford Classic Texts in the Physical Sciences, Hill, R., Oxford University Press Inc, ISBN 0-19-850367-9 · Zbl 1035.74013
[45] Hoger A (1986) The material time derivative of logarithmic strain. Int J Solids Struct 22(9):1019-1032 · Zbl 0599.73036 · doi:10.1016/0020-7683(86)90034-X
[46] Hughes TJR (1987) The finite element method. Linear static and dynamic finite element analysis. Prentice-Hall Inc, Englewood Cliffs, NJ, ISBN 0-13-317025-X · Zbl 0508.73030
[47] Im S, Atluri SN (1987) A study of two finite strain plasticity models: an internal time theory using Mandel’s director concept, and a general isotropic/kinematic-hardening theory. Int J Plast 3(2):163-191 · Zbl 0633.73051 · doi:10.1016/0749-6419(87)90005-2
[48] Jaumann G (1911) Geschlossenes system physikalischer und chemischer differentialgesetze. Sitzungsberichte der Akademie der Wissenschaften, Wien 120:385-530 · JFM 42.0854.05
[49] Ji W, Waas AM, Bažant ZP (2010) Errors caused by non-work-conjugate stress and strain measures and necessary corrections in finite element programs. J Appl Mech 77(4):1-5 · doi:10.1115/1.4000916
[50] Johnson GC, Bammann DJ (1984) A discussion of stress rates in finite deformation problems. Int J Solids Struct 20(8):725-737 · Zbl 0546.73031 · doi:10.1016/0020-7683(84)90061-1
[51] Kachanov LM (1971) Foundations of the theory of plasticity, 2nd edn, English Translation, ISBN 0-7204-2363-5, monograph in the series North-Holland Series in Applied Mathematics and Mechanics, Number 12, Series Editors Lauwerier, H.A., Koiter, W.T., North-Holland Publishing Company · Zbl 1032.74516
[52] Kolymbas D, Herle I (2003) Shear and objective stress rates in hypoplasticity. Int J Numer Anal Methods Geomech 27(9):733-744 · Zbl 1085.74501 · doi:10.1002/nag.297
[53] Korobeynikov SN (2008) Objective tensor rates and applications in formulation of hyperelastic relations. J Elast 93(2):105-140 · Zbl 1159.74325
[54] Korobeynikov SN (2011) Families of continuous spin tensors and applications in continuum mechanics. Acta Mech 216(1-4):301-332 · Zbl 1398.74017 · doi:10.1007/s00707-010-0369-7
[55] Lee EH, Mallett RL, Wertheimer TB (1983) Stress analysis for anisotropic hardening in finite-deformation plasticity. J Appl Mech 50(3):554-560 · Zbl 0524.73046 · doi:10.1115/1.3167090
[56] Levi-Civita T (2005) The absolute differential calculus. Calculus of tensors, 2nd edn, English Translation, ISBN 978-0486446370, first published in 1927, Dover Publications Inc · Zbl 1206.53013
[57] Liangsen C, Xinghua Z, Minfu F (1999) The simple shear oscillation and the restrictions to elastic-plastic constitutive relations. Appl Math Mech (English Edition) 20(6):593-603 · Zbl 0959.74012
[58] Lijun S, Lizhou P, Fubao H (1998) Study on the generalized Prandtl-Reuss constitutive equation and the corotational rates of stress tensor. Appl Math Mech (English Edition) 19(8):735-743 · Zbl 0924.73070
[59] Lin RC (2002) Numerical study of consistency of rate constitutive equations with elasticity at finite deformation. Int J Numer Methods Eng 55(9):1053-1077 · Zbl 1037.74004 · doi:10.1002/nme.536
[60] Lin RC (2003) Hypoelasticity-based analytical stress solutions in the simple shearing process. J Appl Math Mech (Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM)) 83(3):163-171 · Zbl 1116.74325
[61] Lin RC, Schomburg U, Kletschkowski T (2003) Analytical stress solutions of a closed deformation path with stretching and shearing using the hypoelastic formulations. Eur J Mech A Solids 22(3):443-461 · Zbl 1032.74516 · doi:10.1016/S0997-7538(03)00031-7
[62] Liu CS, Hong HK (1999) Non-oscillation criteria for hypoelastic models under simple shear deformation. J Elast 57(3):201-241 · Zbl 1003.74012 · doi:10.1023/A:1007616117953
[63] Liu CS, Hong HK (2001) Using comparison theorem to compare corotational stress rates in the model of perfect elastoplasticity. Int J Solids Struct 38(17):2969-2987 · Zbl 0994.74009 · doi:10.1016/S0020-7683(00)00214-6
[64] Livermore Software Technology Corporation (2011) LS-DYNA 9.71 Revision 5.9419 Documentation. Livermore, CA, USA · Zbl 0970.74008
[65] Loret B (1983) On the effects of plastic rotation in the finite deformation of anisotropic elastoplastic materials. Mech Mater 2(4):287-304 · doi:10.1016/0167-6636(83)90021-2
[66] Lubarda VA (2002) Elastoplasticity theory, monograph in the series Mechanical Engineering Series, Series Editor Kreith, F., CRC Press LLC, ISBN 0-8493-1138-1 · Zbl 0633.73051
[67] Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice-Hall Inc, Englewood Cliffs, NJ, ISBN 0-13-561076-1 · Zbl 0035.41503
[68] Marsden JE, Ratiu T, Abraham R (2007) Manifolds, tensor analysis, and applications, 3rd edn, ISBN 0-201-10168-S, first published in 1983, monograph in the series Applied Mathematical Sciences · Zbl 0508.58001
[69] Masur EF (1965) On tensor rates in continuum mechanics. J Appl Math Phys (Zeitschrift für Angewandte Mathematik und Physik (ZAMP)) 16(2):191-201 · Zbl 0127.14801
[70] Metzger DR, Dubey RN (1987) Corotational rates in constitutive modeling of elastic-plastic deformation. Int J Plast 3(4):341-368 · Zbl 0626.73030
[71] Meyers A, Bruhns OT, Xiao H (2000) Large strain response of kinematic hardening elastoplasticity with the logarithmic rate: Swift effect in torsion. Meccanica 35(3):229-247 · Zbl 0993.74011 · doi:10.1023/A:1010352423797
[72] Meyers A, Bruhns OT, Xiao H (2005) Objective stress rates in repeated elastic deformation cycles. Proc Appl Math Mech 5(1 - Special Issue: GAMM Annual Meeting 2005 - Luxembourg):249-250, John Wiley & Sons Inc · Zbl 1391.74025
[73] Meyers A, Xiao H, Bruhns OT (2006) Choice of objective rate in single parameter hypoelastic deformation cycles. Comput Struct 84(17-18):1134-1140 · doi:10.1016/j.compstruc.2006.01.012
[74] Molenkamp F (1986) Limits to the Jaumann stress rate. Int J Numer Anal Methods Geomech (Zeitschrift für Angewandte Mathematik und Physik (ZAMP)) 10(2):151-176 · Zbl 0579.73113
[75] Moon P, Spencer DE (1986) Theory of holors. A generalization of tensors. Cambridge University Press, Cambridge, MA, ISBN 978-0-521-24585-2 · Zbl 0598.53016
[76] Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11(9):582-592 · JFM 66.1021.04 · doi:10.1063/1.1712836
[77] Moss WC (1984) On instabilities in large deformation simple shear loading. Comput Methods Appl Mech Eng 46(3):329-338 · Zbl 0549.73027 · doi:10.1016/0045-7825(84)90108-7
[78] MSC Software (2008) Marc 2008 documentation. Santa Ana, California, USA
[79] Naghdi PM (1990) A critical review of the state of finite plasticity. J Appl Math Phys (Zeitschrift für Angewandte Mathematik und Physik (ZAMP)) 41(3):315-394 · Zbl 0712.73032
[80] Nagtegaal JC, De Jong JE (1981) Some aspects of non-isotropic workhardening in finite strain plasticity. In: Proceedings of research workshop: plasticity of metals at finite strain: theory, experiment and computation, June 29-July 1, 1981, Stanford University, Stanford, CA, USA, pp 65-106. Stanford University—Department of Mechanical Engineering, Aeronautical Engineering and Mechanics, Rensselaer Polytechnic Institute, Division of Applied Mechanics · Zbl 0149.43201
[81] Nemat-Nasser S (1982) On finite deformation elasto-plasticity. Int J Solids Struct 18(10):857-872 · Zbl 0508.73030 · doi:10.1016/0020-7683(82)90070-1
[82] Noll W (1958) A mathematical theory of the mechanical behavior of continuous media. Arch Ration Mech Anal 2(1):197-226 · Zbl 0083.39303 · doi:10.1007/BF00277929
[83] Ogden RW (1997) Non-linear elastic deformations, 2nd edn, ISBN 0-486-69648-0, first published in 1984. Ogden. R.W.—Ellis Harwood Ltd., Dover Publications Inc · Zbl 0541.73044
[84] Oldroyd JG (1950) On the formulation of rheological equations of state. Proc R Soc A Math Phys Eng Sci 200(1063):523-541 · Zbl 1157.76305
[85] Pan WF, Lee TH, Yeh WC (1996) Endochronic analysis for finite elasto-plastic deformation and application to metal tube under torsion and metal rectangular block under biaxial compression. Int J Plast 12(10):1287-1316 · Zbl 0896.73025 · doi:10.1016/S0749-6419(95)00054-2
[86] Pinsky PM, Ortiz M, Pister KS (1983) Numerical integration of rate constitutive equations in finite deformation analysis. Comput Methods Appl Mech Eng 40(2):137-158 · Zbl 0504.73057 · doi:10.1016/0045-7825(83)90087-7
[87] Prager W (1962) On higher rates of stress and deformation. J Mech Phys Solids 10(2):133-138 · Zbl 0105.37102 · doi:10.1016/0022-5096(62)90016-9
[88] Rivlin RS (1949) Large elastic deformations of isotropic materials. VI. Further results in the theory of torsion, shear and flexure. Proc R Soc A Math Phys Eng Sci 242(845):173-195 · Zbl 0035.41503 · doi:10.1098/rsta.1949.0009
[89] Rivlin RS, Smith GF (1987) A note on material frame indifference. Int J Solids Struct 23(12):1639-1643 · Zbl 0627.73001 · doi:10.1016/0020-7683(87)90114-4
[90] Rizzi E, Carol I (2001) A formulation of anisotropic elastic damage using compact tensor formalism. J Elast 64(2-3):85-109 · Zbl 1034.74005
[91] Roy S, Fossum AF, Dexter RJ (1992) On the use of polar decomposition in the integration of hypoelastic constitutive laws. Int J Eng Sci 30(2):119-133 · Zbl 0746.73012 · doi:10.1016/0020-7225(92)90045-I
[92] Sansour C, Bednarczyk H (1993) A study on rate-type constitutive equations and the existence of a free energy function. Acta Mech 100(3-4):205-221 · Zbl 0777.73003 · doi:10.1007/BF01174790
[93] Scheidler MJ (1991a) Time rates of generalized strain tensors. Part I: component formulas, report BRL-TR-3195, U.S. Army Laboratory Command, Ballistic Research Laboratory, Aberdeen Proving Ground · Zbl 0658.73031
[94] Scheidler MJ (1991b) Time rates of generalized strain tensors. Part II: approximate basis-free formulas, Report BRL-TR-3279, U.S. Army Laboratory Command, Ballistic Research Laboratory, Aberdeen Proving Ground
[95] Schouten JA (1951) Tensor analysis for physicists. Oxford University Press Inc, Oxford · Zbl 0044.38302
[96] Schouten JA, (1954) Ricci-calculus. An introduction to tensor analysis and its geometrical applications, 2nd edn, ISBN 978-3-662-12927-2, first published in 1923, monograph in the series Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete, Number 10, Series Editors Grammel, R., Hopf, E., Hopf, F., Rellich, F., Schmidt, F.K., Van der Waerden, B.L · Zbl 1142.74012
[97] Simo JC (1988a) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: part I. Continuum formulation. Comput Methods Appl Mech Eng 66(2):199-219 · Zbl 0611.73057 · doi:10.1016/0045-7825(88)90076-X
[98] Simo JC (1988b) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: part II. Computational aspects. Comput Methods Appl Mech Eng 68(1):1-31 · Zbl 0644.73043 · doi:10.1016/0045-7825(88)90104-1
[99] Simo JC, Hughes TJR (1998) Computational inelasticity, ISBN 0-387-97520-9, monograph in the series Interdisciplinary Applied Mathematics, Number 7, Series Editors Marsden, J.E., Wiggins, S., Sirovich, L · Zbl 1098.74540
[100] Simo JC, Pister KS (1984) Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput Methods Appl Mech Eng 46(2):201-215 · Zbl 0525.73042 · doi:10.1016/0045-7825(84)90062-8
[101] Sowerby R, Chu E (1984) Rotations, stress rates and strain measures in homogeneous deformation processes. Int J Solids Struct 20(11-12):1037-1048 · Zbl 0564.73049 · doi:10.1016/0020-7683(84)90089-1
[102] Steinmann P (2013) On the roots of continuum mechanics in differential geometry-a review, book chapter in generalized continua from the theory to engineering applications, ISBN 978-3-7091-1371-4, anthological monograph in the series CISM International Centre for Mechanical Sciences: Courses and Lectures, Series Editors Pfeiffer, F., Rammerstorfer, F.G., Salençon, J., Schrefler, B., Serafini, P., Anthology Editors Altenbach, H., Eremeyev, V.A · Zbl 0763.73052
[103] Svendsen B, Arndt S, Klingbeil D, Sievert R (1998) Hyperelastic models for elastoplasticity with non-linear isotropic and kinematic hardening at large deformation. Int J Solids Struct 35(25):3363-3389 · Zbl 0936.74021 · doi:10.1016/S0020-7683(98)00009-2
[104] Szabó L, Balla M (1989) Comparison of some stress rates. Int J Solids Struct 25(3):279-297 · doi:10.1016/0020-7683(89)90049-8
[105] Taylor LM, Becker EB (1983) Some computational aspects of large deformation, rate-dependent plasticity problems. Comput Methods Appl Mech Eng 41(3):251-277 · Zbl 0509.73046 · doi:10.1016/0045-7825(83)90009-9
[106] Thomas TY (1955) Kinematically preferred co-ordinate systems. Proc Natl Acad Sci USA 41(10):762-770 · Zbl 0065.37003 · doi:10.1073/pnas.41.10.762
[107] Truesdell CA (1956) Hypo-elastic shear. J Appl Phys 27(5):441-447 · doi:10.1063/1.1722399
[108] Truesdell CA (1966) The elements of continuum mechanics. Springer · Zbl 0188.58803
[109] Truesdell CA (1991) A first course in rational continuum mechanics. Volume 1: general concepts, 2nd edn, ISBN 0-12-701300-8, first published in 1977, monograph in the series Pure and Applied Mathematics, Number 71, Series Editors Smith, P.A., Eilenberg, S., Bass, H., Borel, A., Yau, S.T., Academic Press Inc · Zbl 0357.73011
[110] Truesdell CA, Noll W (2004) The non-linear field theories of mechanics, 3rd edn, ISBN 3-540-02779-3, first published in 1965 · Zbl 1068.74002
[111] Tsakmakis C, Haupt P (1989) On the hypoelastic-idealplastic constitutive model. Acta Mech 80(3-4):273-285 · Zbl 0703.73020 · doi:10.1007/BF01176164
[112] Valanis KC (1990) Back stress and Jaumann rates in finite plasticity. Int J Plast 6(3):353-367 · Zbl 0712.73034 · doi:10.1016/0749-6419(90)90007-2
[113] Vorel J, Bažant ZP (2014) Review of energy conservation errors in finite element softwares caused by using energy-inconsistent objective stress rates. Adv Eng Softw 72:3-7 · Zbl 0603.73045
[114] Wilkins ML (1963) Calculation of elastic-plastic flow, Report UCRL-7322. University of California, Lawrence Radiation Laboratory
[115] Wu HC (2007) On stress rate and plasticity constitutive equations referred to a body-fixed coordinate system. Int J Plast 23(9):1486-1511 · Zbl 1134.74324 · doi:10.1016/j.ijplas.2007.01.007
[116] Wu PD, Van der Giessen E (1991) Analysis of elastic-plastic torsion of circular bars at large strains. Arch Appl Mech 61(2):89-103 · Zbl 0732.73033 · doi:10.1007/BF00787401
[117] Xia Z, Ellyin F (1993) A stress rate measure for finite elastic plastic deformations. Acta Mech 98(1-4):1-14 · Zbl 0771.73025 · doi:10.1007/BF01174289
[118] Xiao H, Bruhns OT, Meyers A (1997a) Hypo-elasticity model based upon the logarithmic stress rate. J Elast 47(1):51-68 · Zbl 0888.73011 · doi:10.1023/A:1007356925912
[119] Xiao H, Bruhns OT, Meyers A (1997b) Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech 124(1-4):89-105 · Zbl 0909.73006 · doi:10.1007/BF01213020
[120] Xiao H, Bruhns OT, Meyers A (1998) On objective corotational rates and their defining spin tensors. Int J Solids Struct 35(30):4001-4014 · Zbl 0936.74012 · doi:10.1016/S0020-7683(97)00267-9
[121] Xiao H, Bruhns OT, Meyers A (1999a) A natural generalization of hypoelasticity and Eulerian rate type formulation of hyperelasticity. J Elast 56(1):59-93 · Zbl 0970.74008 · doi:10.1023/A:1007677619913
[122] Xiao H, Bruhns OT, Meyers A (1999) Existence and uniqueness of the integrable-exactly hypoelastic equation <InlineEquation ID=”IEq39“> <EquationSource Format=”TEX“>\[ \mathop{\varvec{\tau }}\limits^{\circ } \ast =\lambda \left({tr\varvec{D}}\right)\varvec{I}+2\mu \varvec{D} \] <EquationSource Format=”MATHML“> <math xmlns:xlink=”http://www.w3.org/1999/xlink“> <mi mathvariant=”bold-italic“>τ∘*= <mi mathvariant=”italic“>λ <mfenced close=”)“ open=”(“ separators=”> trDI+2μD and its significance to finite inelasticity. Acta Mech 56(1):31-50 · Zbl 0978.74011 · doi:10.1007/BF01179540
[123] Xiao H, Bruhns OT, Meyers A (2001) Large strain responses of elastic-perfect plasticity and kinematic hardening plasticity with the logarithmic rate: Swift effect in torsion. Int J Plast 17(2):211-235 · Zbl 1007.74026 · doi:10.1016/S0749-6419(00)00054-1
[124] Xiao H, Bruhns OT, Meyers A (2005) Objective stress rates, path-dependence properties and non-integrability problems. Acta Mech 176(3-4):135-151 · Zbl 1071.74002 · doi:10.1007/s00707-005-0218-2
[125] Xiao H, Bruhns OT, Meyers A (2006a) Elastoplasticity beyond small deformations. Acta Mech 182(1-2):31-111 · Zbl 1116.74005 · doi:10.1007/s00707-005-0282-7
[126] Xiao H, Bruhns OT, Meyers A (2006b) Objective stress rates, cyclic deformation paths, and residual stress accumulation. J Appl Math Mech (Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM)) 86(11):843-855 · Zbl 1110.74016
[127] Yang W, Cheng L, Hwang KC (1992) Objective corotational rates and shear oscillation. Int J Plast 8(6):643-656 · Zbl 0765.73028
[128] Yong S, Zhi-Da C (1989) On the objective stress rate in co-moving coordinate system. Appl Math Mech (English Edition) 10(2):103-112 · Zbl 0729.73064
[129] Zaremba S (1903) Sur une forme perfectionnée de la théorie de la relaxation. Bulletin International de L’Académie des Sciences de Cracovie. Polish Academy of Arts and Sciences, pp 594-614 · JFM 34.0805.02
[130] Zaremba S (1937) Sur une conception nouvelle des forces intérieures dans un fluide en mouvement. Mémorial des Sciences Mathématiques, L’Académie des Sciences de Paris 82:1-85 · JFM 63.0777.01
[131] Zhang XQ (2009) Objective stress rates and residual strains in stress cycles. Multidiscip Model Mater Struct 5(1):77-98 · Zbl 0712.73034
[132] Zhong-Heng G (1983) Recent investigations on strain and stress rates in nonlinear continuum mechanics. Appl Math Mech (English Edition) 4(5):639-648 · Zbl 0528.73014
[133] Zhou X, Tamma KK (2003) On the applicability and stress update formulations for corotational stress rate hypoelasticity constitutive models. Finite Elem Anal Des 39(8):783-816 · doi:10.1016/S0168-874X(03)00059-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.