×

Foxby duality and Gorenstein injective and projective modules. (English) Zbl 0862.13004

All modules and linear maps considered here are defined over a Cohen-Macaulay local ring of dimension \(d\) admitting a dualizing module \(D\). The notion of \(G\)-dimension of a finitely generated module was introduced by M. Auslander [in: Séminaire Algèbre commutative Paris, 1966/67, Éc. Norm. Supér. Jeunes Filles (1968)]. Foxby established a duality between two full subcategories in the category of modules and proved that the finitely generated modules in one category are precisely those of finite \(G\)-dimension [H.-B. Foxby, in: Commutative algebra, internat. Conf., Vechta 1994, Vechtaer Univ.-Schnitten 13, 59-63 (1994; Zbl 0834.13014)]. The main purposes of the paper are to generalize the notion of \(G\)-dimension and to extend Foxby’s result.
A modulo \(M\) is said to be Gorenstein- \((G\)- for short) projective if there is an exact sequence \(\cdots \to P_2\to P_1 \to P_0 @>d_0>> P_{-1}\to \cdots\) of projective modules such that \(M= \text{Ker} (d_0)\) and such that \(\operatorname{Hom} (\;,P)\) leaves the sequence exact whenever \(P\) is a projective module. A module \(N\) is said to be \(G\)-injective if there is an exact sequence \(\cdots \to E^{-1} \to E^0 @>d^0>> E^1\to E^2\to \cdots\) of injective modules such that \(N=\text{Ker} (d^0)\) and such that \(\operatorname{Hom} (E,\;)\) leaves the sequence exact whenever \(E\) is an injective module. The class \({\mathcal G}_0\) is defined to consist of those modules \(M\) such that \(\text{Tor}_i (D,M)=0\) and \(\text{Ext}^i (D,D \otimes M)=0\) for all \(i\geq 1\) and such that the natural map \(M\to \operatorname{Hom} (D,D \otimes M)\) is an isomorphism. The class \({\mathcal J}_0\) consists of those \(N\) such that \(\text{Ext}^i (D,N) =0\) and \(\text{Tor}_i (D,\operatorname{Hom} (D,N))=0\) for all \(i\geq 1\) and such that \(D\otimes \operatorname{Hom} (D,N)\to N\) is an isomorphism. The functor \(D\otimes-\) from \({\mathcal G}_0\) to \({\mathcal J}_0\) gives an equivalence between these two categories, and similarly \(\operatorname{Hom} (D,\;): {\mathcal J}_0 \to {\mathcal G}_0\) is an equivalence. In section two, the “main theorems”, the authors prove are: For a module \(M\), \[ M\in {\mathcal G}_0 \Leftrightarrow G\text{-proj} \dim M< \infty \Leftrightarrow G \text{-proj} \dim M\leq d; \] and for \(N\), \[ N\in {\mathcal J}_0 \Leftrightarrow G \text{-inj} \dim N<\infty \Leftrightarrow G\text{-inj} \dim N\leq d. \] \((G\)-projective and injective dimensions are defined in the usual way.)
In section three the notion of a \(G\)-flat module is introduced and a characterization of a \(G\)-flat module is given. For a class \({\mathcal F}\) of modules, \({\mathcal F}\)-(pre)covers and \({\mathcal F}\)-(pre)envelopes are defined. Some results concerning \(G\)-projective precovers, \(G\)-injective preenvelopes and \(G\)-flat covers are given.

MSC:

13C10 Projective and free modules and ideals in commutative rings
13C11 Injective and flat modules and ideals in commutative rings
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
13D02 Syzygies, resolutions, complexes and commutative rings
13D25 Complexes (MSC2000)
18G15 Ext and Tor, generalizations, Künneth formula (category-theoretic aspects)
18G05 Projectives and injectives (category-theoretic aspects)

Citations:

Zbl 0834.13014
Full Text: DOI

References:

[1] Anneaux de Gorenstein, et torsion en algèbre commutative, Séminaire d’Algèbre Commutative dirigé par Pierre Samuel, 1966/67. Texte rédigé, d’après des exposés de Maurice Auslander, Marguerite Mangeney, Christian Peskine et Lucien Szpiro. École Normale Supérieure de Jeunes Filles, Secrétariat mathématique, Paris, 1967 (French).
[2] Maurice Auslander and Mark Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I., 1969. · Zbl 0204.36402
[3] Maurice Auslander and Ragnar-Olaf Buchweitz, The homological theory of maximal Cohen-Macaulay approximations, Mém. Soc. Math. France (N.S.) 38 (1989), 5 – 37 (English, with French summary). Colloque en l’honneur de Pierre Samuel (Orsay, 1987). · Zbl 0697.13005
[4] Richard Belshoff, Edgar E. Enochs, and Jin Zhong Xu, The existence of flat covers, Proc. Amer. Math. Soc. 122 (1994), no. 4, 985 – 991. · Zbl 0840.16003
[5] Edgar Enochs, Flat covers and flat cotorsion modules, Proc. Amer. Math. Soc. 92 (1984), no. 2, 179 – 184. · Zbl 0522.13008
[6] Edgar E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189 – 209. · Zbl 0464.16019 · doi:10.1007/BF02760849
[7] E. Enochs and O.M.G. Jenda, Gorenstein injective and projective modules, Math. Zeit. 220 (1995), 611–633. CMP 1996:5 · Zbl 0845.16005
[8] E. Enochs and O.M.G. Jenda, Gorenstein balance of Hom and Tensor, Tsukuba J. Math. 19 (1995), 1–13. CMP 1995:17 · Zbl 0839.16012
[9] Edgar E. Enochs and Overtoun M. G. Jenda, On Gorenstein injective modules, Comm. Algebra 21 (1993), no. 10, 3489 – 3501. · Zbl 0783.13011 · doi:10.1080/00927879308824744
[10] Edgar E. Enochs and Overtoun M. G. Jenda, Mock finitely generated Gorenstein injective modules and isolated singularities, J. Pure Appl. Algebra 96 (1994), no. 3, 259 – 269. · Zbl 0833.13007 · doi:10.1016/0022-4049(94)90102-3
[11] Edgar E. Enochs, Overtoun M. G. Jenda, and Blas Torrecillas, Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1993), no. 1, 1 – 9 (English, with Chinese summary). · Zbl 0794.16001
[12] E. Enochs, O.M.G. Jenda and J. Xu, Covers and envelopes over Gorenstein rings (to appear in Tsukuba J. Math.). · Zbl 0895.16001
[13] Hans-Bjørn Foxby, Gorenstein modules and related modules, Math. Scand. 31 (1972), 267 – 284 (1973). · Zbl 0272.13009 · doi:10.7146/math.scand.a-11434
[14] Hans-Bjørn Foxby, Duality homomorphisms for modules over certain Cohen-Macaulay rings, Math. Z. 132 (1973), 215 – 226. · Zbl 0264.13006 · doi:10.1007/BF01213866
[15] Hans-Bjørn Foxby, Quasi-perfect modules over Cohen-Macaulay rings, Math. Nachr. 66 (1975), 103 – 110. · Zbl 0324.13008 · doi:10.1002/mana.19750660111
[16] H.-B. Foxby, Gorenstein dimensions over Cohen-Macaulay rings, Proceedings of the international conference on commutative algebra, W. Bruns (editor), Universität Osnabrück, 1994. · Zbl 0834.13014
[17] Takeshi Ishikawa, On injective modules and flat modules, J. Math. Soc. Japan 17 (1965), 291 – 296. · Zbl 0199.07802 · doi:10.2969/jmsj/01730291
[18] C. U. Jensen, On the vanishing of \varprojlim\?\(^{1}\)\?, J. Algebra 15 (1970), 151 – 166. · Zbl 0199.36202 · doi:10.1016/0021-8693(70)90071-2
[19] Michel Raynaud and Laurent Gruson, Critères de platitude et de projectivité. Techniques de ”platification” d’un module, Invent. Math. 13 (1971), 1 – 89 (French). · Zbl 0227.14010 · doi:10.1007/BF01390094
[20] J. Xu and E. Enochs, Gorenstein flat covers of modules over Gorenstein rings (to appear in J. Algebra). · Zbl 0847.16003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.