×

On the multiplicity of eigenvalues of a fourth-order differential operator on a graph. (English. Russian original) Zbl 1509.34090

Differ. Equ. 58, No. 7, 869-876 (2022); translation from Differ. Uravn. 58, No. 7, 882-889 (2022).
Summary: We study the properties of eigenvalues of a boundary value problem for a fourth-order differential equation on a geometric graph modeling the elastic deformations of a system of rods elastically hinged at the joints. We establish the simplicity conditions for the points of the spectrum of the corresponding differential operator. Estimates for the multiplicity of eigenvalues are derived. These estimates are given in terms of the topological characteristics of the graph. The estimates are sharp within the framework of these concepts.

MSC:

34L15 Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators
34B45 Boundary value problems on graphs and networks for ordinary differential equations
47E05 General theory of ordinary differential operators
Full Text: DOI

References:

[1] Borovskikh, A. V.; Mustafokulov, R.; Lazarev, K. P.; Pokornyi, Yu. V., On a class of fourth-order differential equations on a spatial network, Dokl. Ross. Akad. Nauk, 345, 6, 730-732 (1995) · Zbl 0891.34018
[2] Kulaev, R. Ch., The Green function of the boundary-value problem on a star-shaped graph, Russ. Math., 57, 2, 48-57 (2013) · Zbl 1279.34045 · doi:10.3103/S1066369X13020060
[3] Kulaev, R. Ch., Disconjugacy of fourth-order equations on graphs, Sb. Math., 206, 12, 1731-1770 (2015) · Zbl 1360.34068 · doi:10.1070/SM2015v206n12ABEH004512
[4] Pokornyi, Yu. V.; Mustafokulov, R., On the positiveness of the Green’s function of linear boundary value problems for fourth-order equations on a graph, Russ. Math., 43, 2, 71-78 (1999) · Zbl 0997.34021
[5] Borovskikh, A. V.; Lazarev, K. P., Fourth-order differential equations on geometric graphs, J. Math. Sci., 119, 6, 719-738 (2004) · Zbl 1118.34311 · doi:10.1023/B:JOTH.0000012753.65477.23
[6] Mercier, D. and Régnier, V., Control of a network of Euler-Bernoulli beams, J. Math. Anal. Appl., 2008, vol. 342, no. 2, pp. 874-894. · Zbl 1134.74038
[7] Xu Gen Qi; Mastorakis, N. E., Differential Equations on Metric Graph (2010), Boston: WSEAS, Boston
[8] Lubary, J. A., On the geometric and algebraic multiplicities for eigenvalue problems on graphs, Lect. Notes Pure Appl. Math., 219, 135-146 (2001) · Zbl 0982.34072
[9] Pokornyi, Yu. V.; Penkin, O. M.; Pryadiev, V. L.; Borovskikh, A. V.; Lazarev, K. P.; Shabrov, S. A., Differentsial’nye uravneniya na geometricheskikh grafakh (Differential Equations on Geometric Graphs) (2007), Moscow: Fizmatlit, Moscow
[10] Kuchment, P., Quantum graphs. I. Some basic structures, Waves Random Media, 14, 1, 107-128 (2004) · Zbl 1063.81058 · doi:10.1088/0959-7174/14/1/014
[11] Kuchment, P., Quantum graphs. II. Some spectral properties of quantum and combinatorial graphs, J. Phys. A, 38, 22, 4887-4900 (2005) · Zbl 1070.81062 · doi:10.1088/0305-4470/38/22/013
[12] Diab, A. T.; Kaldybekova, B. K.; Penkin, O. M., On the multiplicity of eigenvalues of the Sturm-Liouville problem on graphs, Math. Notes, 99, 4, 492-502 (2016) · Zbl 1352.34040 · doi:10.1134/S0001434616030226
[13] Kulaev, R. Ch., Necessary and sufficient condition for the positivity of the Green function of a boundary value problem for a fourth-order equation on a graph, Differ. Equations, 51, 3, 302-316 (2015) · Zbl 1331.34041 · doi:10.1134/S0012266115030039
[14] Kulaev, R. Ch., On the disconjugacy property of an equation on a graph, Sib. Math. J., 57, 1, 64-73 (2016) · Zbl 1353.34034 · doi:10.1134/S0037446616010079
[15] Kulaev, R. Ch., On the nonoscillation of an equation on a graph, Differ. Equations, 50, 11, 1565-1566 (2014) · Zbl 1317.34042 · doi:10.1134/S0012266114110196
[16] Kulaev, R. Ch.; Urtaeva, A. A., Sturm separation theorems for a fourth-order equation on a graph, Math. Notes, 111, 6, 977-981 (2022) · Zbl 1501.34028 · doi:10.1134/S0001434622050327
[17] Kulaev, R. Ch., The qualitative theory of fourth-order differential equations on a graph, Mediterr. J. Math., 19, 73, 1-15 (2022) · Zbl 1494.34111
[18] Timoshenko, S.P., Young, D.H., and Weaver W., Jr., Vibration Problems in Engineering, Chichester: John Wiley & Sons, 1990.
[19] Leighton, W.; Nehari, Z., On the oscillation of solutions of self-adjoint linear differential equations of the fourth order, Trans. Am. Math. Soc., 89, 325-377 (1958) · Zbl 0084.08104 · doi:10.1090/S0002-9947-1958-0102639-X
[20] Castro, C.; Zuazua, E., Exact boundary controllability of two Euler-Bernoulli beams connected by a point mass, Math. Comput. Model., 32, 955-969 (2000) · Zbl 1005.74041 · doi:10.1016/S0895-7177(00)00182-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.