×

Sharp \(L^{p}\)-boundedness of oscillatory integral operators with polynomial phases. (English) Zbl 06780328

Summary: In this paper, we shall prove the \(L^{p}\) endpoint decay estimates of oscillatory integral operators with homogeneous polynomial phases \(S\) in \(\mathbb {R} \times \mathbb {R}\). As a consequence, sharp \(L^{p}\) decay estimates are also obtained when polynomial phases have the form \(S(x^{m_{1}},y^{m_{2}})\) with \(m_1\) and \(m_2\) being positive integers.

MSC:

47G10 Integral operators
44A05 General integral transforms

References:

[1] Bak, J.G.: An \[L^p-L^q\] Lp-Lq estimate for Radon transforms associated with polynomials. Duke Math. J. 101, 259-269 (2000) · Zbl 0980.42008 · doi:10.1215/S0012-7094-00-10125-1
[2] Bak, J.G., Oberlin, D., Seeger, A.: Two endpoint bounds for generalized Radon transforms in the plane. Rev. Mat. Iberoam. 18, 231-247 (2002) · Zbl 1015.42007 · doi:10.4171/RMI/317
[3] Beckner, W.: Pitt’s inequality with sharp convolution estimates. Proc. Am. Math. Soc. 136, 1871-1885 (2008) · Zbl 1221.42016 · doi:10.1090/S0002-9939-07-09216-7
[4] Carbery, A., Christ, M., Wright, J.: Multidimensional van der Corput and sublevel estimates. J. Am. Math. Soc. 12, 981-1015 (1999) · Zbl 0938.42008 · doi:10.1090/S0894-0347-99-00309-4
[5] Christ, M.; Garcia-Cuerva, J. (ed.); Hernandez, E. (ed.); Soria, F. (ed.); Torrea, JL (ed.), Failure of an endpoint estimate for integrals along curves, 163-168 (1995), Boca Raton · Zbl 0871.42017
[6] Fefferman, C., Stein, E.M.: \[H^p\] Hp spaces of several variables. Acta Math. 129, 137-193 (1972) · Zbl 0257.46078 · doi:10.1007/BF02392215
[7] Greenblatt, M.: A direct resolution of singularities for functions of two variables with applications to analysis. J. Anal. Math. 92, 233-257 (2004) · Zbl 1102.42005 · doi:10.1007/BF02787763
[8] Greenblatt, M.: Sharp \[L^2\] L2 estimates for one-dimensional oscillatory integral operators with \[C^\infty C\]∞ phase. Am. J. Math. 127, 659-695 (2005) · Zbl 1082.42009 · doi:10.1353/ajm.2005.0021
[9] Greenleaf, A., Seeger, A.: Oscillatory and Fourier integral operators with folding canonical relations. Stud. Math. 132, 125-139 (1999) · Zbl 0922.35194
[10] Greenleaf, A., Seeger, A.: Oscillatory and Fourier integral operators with degenerate canonical relations. Publ. Mat. 93, 141 (2002) · Zbl 1024.42006
[11] Greenleaf, A., Pramanik, M., Tang, W.: Oscillatory integral operators with homogeneous polynomial phases in several variables. J. Funct. Anal. 244, 444-487 (2007) · Zbl 1127.35090 · doi:10.1016/j.jfa.2006.11.005
[12] Hörmander, L.: Oscillatory integrals and multipliers on \[FL^p\] FLp. Ark. Mat. 11, 1-11 (1973) · Zbl 0254.42010 · doi:10.1007/BF02388505
[13] Jurkat, W.B., Sampson, G.: The complete solution to the \[(L^p, L^q)\](Lp,Lq) mapping problem for a class of oscillating kernels. Indiana Univ. Math. J. 30, 403-413 (1981) · Zbl 0507.47013 · doi:10.1512/iumj.1981.30.30031
[14] Lee, S.: Endpoint \[L^p-L^q\] Lp-Lq estimates for degenerate Radon transforms in \[\mathbb{R}^2\] R2 associated with real analytic functions. Math. Z. 243, 817-841 (2003) · Zbl 1026.44002 · doi:10.1007/s00209-002-0454-2
[15] Lu, S.Z., Zhang, Y.: Criterion on \[L^p\] Lp boundedness for a class of oscillatory singular integrals with rough kernels. Rev. Mat. Iberoam. 8, 201-219 (1992) · Zbl 0786.42007
[16] Pan, Y.: Hardy spaces and oscillatory singular integrals. Rev. Mat. Iberoam. 7, 55-64 (1991) · Zbl 0728.42013 · doi:10.4171/RMI/105
[17] Pan, Y., Sampson, G., Szeptycki, \[P.: L^2\] L2 and \[L^p\] Lp estimates for oscillatory integrals and their extended domains. Stud. Math. 122, 201-224 (1997) · Zbl 0876.42008
[18] Phong, D.H., Stein, E.M.: Hilbert integrals, singular integrals, and Radon transforms \[II\]. Acta Math. 157, 99-157 (1986) · Zbl 0622.42011 · doi:10.1007/BF02392592
[19] Phong, D.H., Stein, E.M.: Oscillatory integrals with polynomial phases. Invent. Math. 110, 39-62 (1992) · Zbl 0829.42014 · doi:10.1007/BF01231323
[20] Phong, D.H., Stein, E.M.: Models of degenerate Fourier integral operators and Radon transforms. Ann. Math. 140, 703-722 (1994) · Zbl 0833.43004 · doi:10.2307/2118622
[21] Phong, D.H., Stein, E.M.: The Newton polyhedron and oscillatory integral operators. Acta Math. 179, 105-152 (1997) · Zbl 0896.35147 · doi:10.1007/BF02392721
[22] Phong, D.H., Stein, E.M.: Damped oscillatory integral operators with analytic phases. Adv. Math. 134, 146-177 (1998) · Zbl 0899.47037 · doi:10.1006/aima.1997.1704
[23] Pramanik, M., Yang, \[C.W.: L^p\] Lp decay estimates for weighted oscillatory integral operators on \[\mathbb{R}\] R. Rev. Mat. Iberoam. 21, 1071-1095 (2005) · Zbl 1097.45007 · doi:10.4171/RMI/446
[24] Ricci, F., Stein, E.M.: Harmonic analysis on nilpotent groups and singular integrals \[II\]: oscillatory integrals. J. Funct. Anal. 73, 179-194 (1987) · Zbl 0622.42010 · doi:10.1016/0022-1236(87)90064-4
[25] Rychkov, V.S.: Sharp \[L^2\] L2 bounds for oscillatory integral operators with \[C^\infty C\]∞ phases. Math. Z. 236, 461-489 (2001) · Zbl 0998.42002 · doi:10.1007/PL00004838
[26] Seeger, A.: Degenerate Fourier integral operators in the plane. Duke Math. J. 71, 685-745 (1993) · Zbl 0806.35191 · doi:10.1215/S0012-7094-93-07127-X
[27] Seeger, A.: Radon transforms and finite type conditions. J. Am. Math. Soc. 11, 869-897 (1998) · Zbl 0907.35147 · doi:10.1090/S0894-0347-98-00280-X
[28] Sjölin, P.: Convolution with oscillating kernels. Indiana Univ. Math. J. 30, 47-56 (1981) · Zbl 0419.47020 · doi:10.1512/iumj.1981.30.30004
[29] Stein, E.M.: Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993) · Zbl 0821.42001
[30] Varchenko, A.: Newton polyhedra and estimations of oscillatory integrals. Funct. Anal. Appl. 18, 175-196 (1976) · Zbl 0351.32011
[31] Yang, C.W.: Sharp estimates for some oscillatory integral operators on \[\mathbb{R}^1\] R1. Ill. J. Math. 48, 1093-1103 (2004) · Zbl 1073.45010
[32] Yang, \[C.W.: L^p\] Lp improving estimates for some classes of Radon transforms. Trans. Am. Math. Soc. 357, 3887-3903 (2005) · Zbl 1074.44002 · doi:10.1090/S0002-9947-05-03807-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.