×

On the structure of the singular set for the kinetic Fokker-Planck equations in domains with boundaries. (English) Zbl 1404.35446

Summary: In this paper, we compute asymptotics of solutions of the kinetic Fokker-Planck equation with inelastic boundary conditions which indicate that the solutions are nonunique if \( r < r_c\). The nonuniqueness is due to the fact that different solutions can interact in a different manner with a Dirac mass which appears at the singular point \((x,v)=(0,0)\). In particular, this nonuniqueness explains the different behaviours found in the physics literature for numerical simulations of the stochastic differential equation associated to the kinetic Fokker-Planck equation. The asymptotics obtained in this paper will be used in a companion paper [“Nonuniqueness for the kinetic-Fokker-Planck equation with inelastic boundary conditions”, Preprint, arXiv:1509.03366] to prove rigorously nonuniqueness of solutions for the kinetic Fokker-Planck equation with inelastic boundary conditions.

MSC:

35Q84 Fokker-Planck equations
35K65 Degenerate parabolic equations
35A20 Analyticity in context of PDEs
35Q70 PDEs in connection with mechanics of particles and systems of particles
35R60 PDEs with randomness, stochastic partial differential equations
35R06 PDEs with measure
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H30 Applications of stochastic analysis (to PDEs, etc.)
47D07 Markov semigroups and applications to diffusion processes

References:

[1] Ab M. Abramovich, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York, 1974.
[2] A L. Anton, Noncollapsing solution below rc for a randomly forced particle, Phys. Rev. E 65 (2002), 047102.
[3] B1 T. W. Burkhardt, Semiflexible polymer in the half plane and statistics of the integral of a Brownian curve, J. Phys. A: Math. Gen. 26 (1993), 1157-1162.
[4] Burschka, M. A.; Titulaer, U. M., The kinetic boundary layer for the Fokker-Planck equation: selectively absorbing boundaries, J. Statist. Phys., 26, 1, 59-71 (1981) · doi:10.1007/BF01106786
[5] Bramanti, Marco; Cupini, Giovanni; Lanconelli, Ermanno; Priola, Enrico, Global \(L^p\) estimates for degenerate Ornstein-Uhlenbeck operators, Math. Z., 266, 4, 789-816 (2010) · Zbl 1206.35051 · doi:10.1007/s00209-009-0599-3
[6] Bertoin, Jean, Reflecting a Langevin process at an absorbing boundary, Ann. Probab., 35, 6, 2021-2037 (2007) · Zbl 1132.60057 · doi:10.1214/009117906000001213
[7] BFG T. W. Burkhardt, J. Franklin, and R. R. Gawronski, Statistics of a confined, randomly accelerated particle with inelastic boundary collisions, Phys. Rev. E, 61 (2000), 2376.
[8] BK T. W. Burkhardt and S. N. Kotsev, Equilibrium of a confined, randomly accelerated, inelastic particle: Is there inelastic collapse?, Phys. Rev. E 70 (2004), 026105.
[9] Bharucha-Reid, A. T., Elements of the theory of Markov processes and their applications, xii+468 pp. (1997), Reprint of the 1960 original, Dover Publications, Inc., Mineola, NY
[10] Brezis, Haim, Functional analysis, Sobolev spaces and partial differential equations, Universitext, xiv+599 pp. (2011), Springer, New York · Zbl 1220.46002
[11] Bouchut, Fran\c{c}ois, Smoothing effect for the non-linear Vlasov-Poisson-Fokker-Planck system, J. Differential Equations, 122, 2, 225-238 (1995) · Zbl 0840.35053 · doi:10.1006/jdeq.1995.1146
[12] Chandresekhar, S., Stochastic problems in physics and astronomy, Rev. Modern Phys., 15, 1-89 (1943) · Zbl 0061.46403 · doi:10.1103/RevModPhys.15.1
[13] CM N. Chernov and R. Markarian, Introduction to the ergodic theory of chaotic billiards, Second edition. Publicacoes Matematicas do IMPA. [IMPA Mathematical Publications] 24o Colloquio Brasileiro de Matematiica. [24th Brazilian Mathematics Colloquium] Instituto de Matematica Pura e Aplicada (IMPA), Rio de Janeiro, 2003. 207 pp. · Zbl 1037.37017
[14] Cinti, Chiara; Nystr\"om, Kaj; Polidoro, Sergio, A note on Harnack inequalities and propagation sets for a class of hypoelliptic operators, Potential Anal., 33, 4, 341-354 (2010) · Zbl 1207.35102 · doi:10.1007/s11118-010-9172-2
[15] CSB S. J. Cornell, M. R. Swift, and A. J. Bray, Inelastic Collapse of a Randomly Forced Particle, Phys. Rev. Lett. 81 (1998), no. 6, 10.
[16] Feller, William, The parabolic differential equations and the associated semi-groups of transformations, Ann. of Math. (2), 55, 468-519 (1952) · Zbl 0047.09303 · doi:10.2307/1969644
[17] Feller, William, Diffusion processes in one dimension, Trans. Amer. Math. Soc., 77, 1-31 (1954) · Zbl 0059.11601 · doi:10.2307/1990677
[18] FBA J. Florencio and F. C. S\'a Barreto, O. F. de Alcantara, Comment on \textquotedblleft Inelastic Collapse of a Randomly Forced Particle”, 84, Phys. Rev. Lett. (2000).
[19] Fr A. Friedman,Partial Differential Equations of Parabolic Type, R. E. Krieger Publishing Company, 1983.
[20] Friedman, Avner, Stochastic differential equations and applications. Vol. 2, xiii+pp. 229-528 (1976), Probability and Mathematical Statistics, Vol. 28, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London · Zbl 0323.60057
[21] Gilbarg, David; Trudinger, Neil S., Elliptic partial differential equations of second order, x+401 pp. (1977), Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York · Zbl 0361.35003
[22] Guo, Yan, Regularity for the Vlasov equations in a half-space, Indiana Univ. Math. J., 43, 1, 255-320 (1994) · Zbl 0799.35031 · doi:10.1512/iumj.1994.43.43013
[23] Guo, Yan, Singular solutions of the Vlasov-Maxwell system on a half line, Arch. Rational Mech. Anal., 131, 3, 241-304 (1995) · Zbl 0840.76097 · doi:10.1007/BF00382888
[24] Guo, Yan, Decay and continuity of the Boltzmann equation in bounded domains, Arch. Ration. Mech. Anal., 197, 3, 713-809 (2010) · Zbl 1291.76276 · doi:10.1007/s00205-009-0285-y
[25] Guo, Yan; Kim, Chanwoo; Tonon, Daniela; Trescases, Ariane, Regularity of the Boltzmann equation in convex domains, Invent. Math., 207, 1, 115-290 (2017) · Zbl 1368.35199 · doi:10.1007/s00222-016-0670-8
[26] Hagan, Patrick S.; Doering, Charles R.; Levermore, C. David, Mean exit times for particles driven by weakly colored noise, SIAM J. Appl. Math., 49, 5, 1480-1513 (1989) · Zbl 0681.60052 · doi:10.1137/0149090
[27] H\`“ormander, Lars, Linear partial differential operators, Die Grundlehren der mathematischen Wissenschaften, Bd. 116, vii+287 pp. (1963), Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-G\'”ottingen-Heidelberg · Zbl 0108.09301
[28] H\"ormander, Lars, Hypoelliptic second order differential equations, Acta Math., 119, 147-171 (1967) · Zbl 0156.10701 · doi:10.1007/BF02392081
[29] Hwang, Hyung Ju, Regularity for the Vlasov-Poisson system in a convex domain, SIAM J. Math. Anal., 36, 1, 121-171 (2004) · Zbl 1077.35038 · doi:10.1137/S0036141003422278
[30] Hwang, Hyung Ju; Vel\'azquez, Juan J. L., Global existence for the Vlasov-Poisson system in bounded domains, Arch. Ration. Mech. Anal., 195, 3, 763-796 (2010) · Zbl 1218.35235 · doi:10.1007/s00205-009-0239-4
[31] Hwang, Hyung Ju; Jang, Juhi; Jung, Jaewoo, The Fokker-Planck equation with absorbing boundary conditions in bounded domains, SIAM J. Math. Anal., 50, 2, 2194-2232 (2018) · Zbl 1392.35313 · doi:10.1137/16M1109928
[32] Hwang, Hyung Ju; Jang, Juhi; Jung, Jaewoo, On the kinetic Fokker-Planck equation in a half-space with absorbing barriers, Indiana Univ. Math. J., 64, 6, 1767-1804 (2015) · Zbl 1343.35233 · doi:10.1512/iumj.2015.64.5679
[33] Hwang, Hyung Ju; Jang, Juhi; Vel\'azquez, Juan J. L., The Fokker-Planck equation with absorbing boundary conditions, Arch. Ration. Mech. Anal., 214, 1, 183-233 (2014) · Zbl 1305.35147 · doi:10.1007/s00205-014-0758-5
[34] HVJ2 H. J. Hwang, J. Jang, and J. L. Velazquez, Nonuniqueness for the kinetic-Fokker-Planck equation with inelastic boundary conditions. Preprint. arXiv:1509.03366 · Zbl 1408.35190
[35] IK64 A. M. Il’in and R. Z. Kasminsky, On the equations of Brownian motion, Theory Probab. Appl. 9 (1964), 421-444. · Zbl 0134.34303
[36] Jacob, Emmanuel, A Langevin process reflected at a partially elastic boundary: I, Stochastic Process. Appl., 122, 1, 191-216 (2012) · Zbl 1262.60078 · doi:10.1016/j.spa.2011.08.003
[37] Jacob, Emmanuel, Langevin process reflected on a partially elastic boundary II. S\'eminaire de Probabilit\'es XLV, Lecture Notes in Math. 2078, 245-275 (2013), Springer, Cham · Zbl 1283.60104 · doi:10.1007/978-3-319-00321-4\_9
[38] Kim, Chanwoo, Formation and propagation of discontinuity for Boltzmann equation in non-convex domains, Comm. Math. Phys., 308, 3, 641-701 (2011) · Zbl 1237.35126 · doi:10.1007/s00220-011-1355-1
[39] Kogoj, Alessia Elisabetta; Lanconelli, Ermanno, An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations, Mediterr. J. Math., 1, 1, 51-80 (2004) · Zbl 1150.35354 · doi:10.1007/s00009-004-0004-8
[40] Kolmogoroff, A., Zuf\"allige Bewegungen (zur Theorie der Brownschen Bewegung), Ann. of Math. (2), 35, 1, 116-117 (1934) · Zbl 0008.39906 · doi:10.2307/1968123
[41] KB S. N. Kotsev and T. W. Burkhardt, Randomly accelerated particle in a box: Mean absorption time for partially absorbing and inelastic boundaries, Phys. Rev. E 71 (2005), 046115.
[42] Liggett, Thomas M., Interacting particle systems, Reprint of the 1985 original, Classics in Mathematics, xvi+496 pp. (2005), Springer-Verlag, Berlin · Zbl 1103.82016 · doi:10.1007/b138374
[43] Lunardi, Alessandra, Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in \({\bf R}^n\), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24, 1, 133-164 (1997) · Zbl 0887.35062
[44] M J. Milnor, Topology from a Differential Viewpoint, University of Virginia Press,1965 · Zbl 0136.20402
[45] Marshall, T. W.; Watson, E. J., A drop of ink falls from my pen.\(\,\ldots\) It comes to earth, I know not when, J. Phys. A, 18, 18, 3531-3559 (1985) · Zbl 0592.60073
[46] Marshall, T. W.; Watson, E. J., The analytic solutions of some boundary layer problems in the theory of Brownian motion, J. Phys. A, 20, 6, 1345-1354 (1987) · Zbl 0634.35075
[47] MP J. Masoliver and J. M. Porra, Exact Solution to the Mean Exit Time Problem for Free Inertial Processes Driven by Gaussian White Noise, Phys. Rev. Letters 75 (1995), no. 2, 189-192.
[48] McKean, H. P., Jr., A winding problem for a resonator driven by a white noise, J. Math. Kyoto Univ., 2, 227-235 (1963) · Zbl 0119.34701 · doi:10.1215/kjm/1250524936
[49] Nier, F., Boundary conditions and subelliptic estimates for geometric Kramers-Fokker-Planck operators on manifolds with boundaries, Mem. Amer. Math. Soc., 252, 1200, v+144 pp. (2018) · Zbl 1419.35001
[50] \O ksendal, Bernt, Stochastic differential equations, An introduction with applications, Universitext, xiii+205 pp. (1985), Springer-Verlag, Berlin · Zbl 0747.60052 · doi:10.1007/978-3-662-13050-6
[51] Pascucci, Andrea, H\"older regularity for a Kolmogorov equation, Trans. Amer. Math. Soc., 355, 3, 901-924 (2003) · Zbl 1116.35330 · doi:10.1090/S0002-9947-02-03151-3
[52] Pazy, A., Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences 44, viii+279 pp. (1983), Springer-Verlag, New York · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[53] Rothschild, Linda Preiss; Stein, E. M., Hypoelliptic differential operators and nilpotent groups, Acta Math., 137, 3-4, 247-320 (1976) · Zbl 0346.35030 · doi:10.1007/BF02392419
[54] Sina\u\i, Ya. G., Distribution of some functionals of the integral of a random walk, Teoret. Mat. Fiz.. Theoret. and Math. Phys., 90 90, 3, 219-241 (1992) · Zbl 0810.60063 · doi:10.1007/BF01036528
[55] Sinai, Yakov G., Hyperbolic billiards. Proceedings of the International Congress of Mathematicians, Vol.I, II, Kyoto, 1990, 249-260 (1991), Math. Soc. Japan, Tokyo · Zbl 0794.58036
[56] Stein, Elias M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, with the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III, Princeton Mathematical Series 43, xiv+695 pp. (1993), Princeton University Press, Princeton, NJ · Zbl 0821.42001
[57] Stroock, D.; Varadhan, S. R. S., On degenerate elliptic-parabolic operators of second order and their associated diffusions, Comm. Pure Appl. Math., 25, 651-713 (1972) · Zbl 0344.35041 · doi:10.1002/cpa.3160250603
[58] Wimp, Jet, On the zeros of a confluent hypergeometric function, Proc. Amer. Math. Soc., 16, 281-283 (1965) · Zbl 0133.03202 · doi:10.2307/2033862
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.