×

\(L^p\)-spectrum of Ornstein-Uhlenbeck operators. (English) Zbl 1065.35216

In this paper the author considers the spectrum of drift operators \(\mathcal L = \sum_{i,j=1}^n b_{ij}x_j D_i\) and the Ornstein–Uhlenbeck operators \({\mathcal A}= \sum_{i,j=1}^n q_{ij} D_{ij}+ \mathcal L\) in \(L^p(\mathbb R^n)\) and \(BUC(\mathbb R^n)\). Let \(B\) be the (nonzero real) matrix \((b_{ij})\), and let \(Q\) be the real symmetric positive-definite matrix \((q_{ij})\). For a linear operator \(\mathcal B\) let the spectral bound of \(\mathcal B\) be \(s(\mathcal B) = \{ \sup \text{Re}\, \mu \, : \,\mu \in \sigma (\mathcal B) \}\). Next, let the boundary spectrum of \(\mathcal B\) be \(\sigma(\mathcal B) \cap \{ \mu \in \mathbb C:\text{Re} \, \mu = s(\mathcal B)\}\). Finally, set \(D_p(\mathcal B)\) be the set of all \(u\in L^p\) such that \(\mathcal B u \in L^p\). In Section 2 of the paper, the author characterises the \(L^p\) spectrum of the drift operator \(\mathcal L\), \(\sigma_p(\mathcal L)\), under different conditions on the matrix \(B\). It turns out that the spectrum is \(p\)-dependent; a typical result is Theorem 2.3. which shows that if \(\text{tr}(B) \neq 0\), then \(\sigma_p(\mathcal L) = - \text{tr}(B)/p + i \mathbb R\).
The main result of Section 3 is Theorem 3.3, which states that the boundary spectrum of \((\mathcal A, \; D_p(\mathcal A))\) contains the spectrum of the drift operator \((\mathcal L, \; D_p(\mathcal L))\).
Section 4, the central section of the paper, concerns the \(L^p\) spectrum of Ornstein-Uhlenbeck operators. Precise results here depend on \(p\), and on the location of the spectrum of \(B\). The results in this section assume that either \(\sigma(\mathcal B) \subset \mathbb C_+\) or \(\sigma(\mathcal B) \subset \mathbb C_-\). As a typical result we quote Theorem 4.12: If \(1 \leq p \leq \infty\) and \(\sigma (B) \subset \mathbb C_-\), then \[ \sigma_p (\mathcal A) = \{ \mu \in \mathbb C \, : \, \hbox{Re} \, \mu \leq -\text{tr}(B)/p \}. \] Finally, in Section 5 the author considers \(L^p\) spectra of Ornstein-Uhlenbeck operators under less restrictive conditions on the spectrum of \(B\), but under the additional assumptions that \(B\) is symmetric and that \(B\) and \(Q\) commute. A result similar to Theorem 4.12, Theorem 5.1, holds in that case.
In Section 6 the author proves results about spectra in \(BUC(\mathbb R^n)\). For example (see Theorem 6.2), if \(\sigma(B) \subset \mathcal C_-\), the spectrum of \((\mathcal A, \, \mathcal D( \mathcal A))\) is the left half-plane; here the domain of \(\mathcal A\) is defined as \[ \{ u \in BUC (\mathbb R^n) \cap W^{2,p}_{\text{loc}} (\mathbb R^n) \; \forall \, p > n \, : \, u \in BUC(\mathbb R^n) \}. \] The proofs use an attractive mixture of results from semigroup theory, Fourier methods and results of Arendt.

MSC:

35P05 General topics in linear spectral theory for PDEs
35J70 Degenerate elliptic equations
35K65 Degenerate parabolic equations
47F05 General theory of partial differential operators
60J60 Diffusion processes

References:

[1] W. Arendt , Gaussian estimates and interpolation of the spectrum in LP , Differential Integral Equations 7 ( 1994 ), 1153 - 1168 . MR 1269649 | Zbl 0827.35081 · Zbl 0827.35081
[2] W. Arendt - F. Räbiger - A. Sourour , Spectral properties of the operator equation A X + X B = Y , Quart. J. Math. Oxford Ser. ( 2 ) 45 ( 1994 ), 133 - 149 . MR 1280689 | Zbl 0826.47013 · Zbl 0826.47013 · doi:10.1093/qmath/45.2.133
[3] D. Bakry , L’hypercontractivite et son utilisation en theorie des semi-groupes , in: D. Bakry, R. D. Gill, S. A. Molchanov, Lectures on probability theory , Springer LNM 1581 , ( 1992 ), 1 - 114 . MR 1307413 | Zbl 0856.47026 · Zbl 0856.47026
[4] D.W. Boyd , The spectrum of the Cesaro operator , Acta Sci. Math. 29 ( 1968 ), 31 - 34 . MR 239441 | Zbl 0157.45501 · Zbl 0157.45501
[5] S. Cerrai , Elliptic and parabolic equations in Rn with coefficients having polynomial growth , Comm. Partial Differential Equations 21 ( 1996 ), 281 - 317 . MR 1373775 | Zbl 0851.35049 · Zbl 0851.35049 · doi:10.1080/03605309608821185
[6] G. Da Prato - A. Lunardi , On the Ornstein-Uhlenbeck operator in spaces of continuous functions , J. Funct. Anal. 131 ( 1995 ), 94 - 114 . MR 1343161 | Zbl 0846.47004 · Zbl 0846.47004 · doi:10.1006/jfan.1995.1084
[7] G. Da Prato - J. Zabczyk , ” Ergodicity for Infinite Dimensional Systems ”, Univ. Press , Cambridge , 1996 . MR 1417491 | Zbl 0849.60052 · Zbl 0849.60052 · doi:10.1017/CBO9780511662829
[8] E.B. Davies - B. Simon , L1 properties of intrinsic Schrödinger semigroups , J. Funct. Anal . 65 ( 1986 ), 126 - 146 . MR 819177 | Zbl 0613.47039 · Zbl 0613.47039 · doi:10.1016/0022-1236(86)90019-4
[9] B. Goldys , On Analyticity of Ornstein- Uhlenbeck semigroups , Rend. Mat. Acc. Lincei ( 9 ) 10 ( 1999 ), 131 - 140 . MR 1769162 | Zbl 1026.47506 · Zbl 1026.47506
[10] L. Hörmander , Hypoelliptic differential operators of second order , Acta Math . 119 ( 1967 ), 147 - 171 . MR 222474 | Zbl 0156.10701 · Zbl 0156.10701 · doi:10.1007/BF02392081
[11] K. Engel - R. Nagel , ” One-parameters Semigroup for Linear Evolution Equations ”, 194 Springer Graduate Texts in Mathematics , 2000 . MR 1721989 | Zbl 0952.47036 · Zbl 0952.47036 · doi:10.1007/b97696
[12] A. Erdelyi , ” Asymptotic Expansions ”, Dover , 1956 . MR 78494 | Zbl 0070.29002 · Zbl 0070.29002
[13] A. Lunardi , Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in Rn , Ann. Scuola Norm. Sup. Pisa Cl. Sc . ( 4 ) 24 ( 1997 ), 133 - 164 . Numdam | MR 1475774 | Zbl 0887.35062 · Zbl 0887.35062
[14] A. Lunardi , On the Ornstein-Uhlenbeck operator in L 2 spaces with respect to invariant measures , Trans. Amer. Math. Soc . 349 ( 1997 ), 155 - 169 . MR 1389786 | Zbl 0890.35030 · Zbl 0890.35030 · doi:10.1090/S0002-9947-97-01802-3
[15] A. Lunardi - V. Vespri , Generation of smoothing semigroups by elliptic operators with unbounded coefficients in Rn ,, Rend. Istit. Mat. Univ. Trieste 28 ( 1997 ), 251 - 279 . MR 1602271 | Zbl 0899.35027 · Zbl 0899.35027
[16] A. Lunardi - V. Vespri , Optimal L\infty and Schauder estimates for elliptic and parabolic operators with unbounded coefficients , In: Proc. Conf. ”Reaction-diffusion systems” G. Caristi - E. Mitidieri (eds.), Lecture notes in pure and applied mathematics 194 , M. Dekker ( 1998 ), 217 - 239 . Zbl 0887.47034 · Zbl 0887.47034
[17] P.A. Meyer , Note sur ler processus d’Ornstein-Uhlenbeck, Seminaire de probabilités XVI , Springer LNM 920 ( 1982 ), 95 - 133 . Numdam | MR 658673 | Zbl 0481.60041 · Zbl 0481.60041
[18] J.M.A.M. Van Neerven - J. Zabczyk , Norm discontinuity of Ornstein-Uhlenbeck semigroups , Semigroup Forum 59 ( 1999 ), 389 - 403 . MR 1847653 | Zbl 0960.47024 · Zbl 0960.47024 · doi:10.1007/s002339900058
[19] E.M. Stein - G. Weiss , ” Introduction to Fourier Analysis on Euclidean Spaces ”, Princeton Univ. Press , 1971 . MR 304972 | Zbl 0232.42007 · Zbl 0232.42007
[20] E.T. Whittaker - G.N. Watson , ” A course of Modem Analysis ”, Cambridge Univ. Press , Cambridge , 1927 . JFM 53.0180.04 · JFM 53.0180.04
[21] L. Weis , The stability of positive semigroups on L p spaces , Proc. Amer. Math. Soc . 123 ( 1995 ), 3089 - 3094 . MR 1273529 | Zbl 0851.47028 · Zbl 0851.47028 · doi:10.2307/2160665
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.