×

Optimal regularity for degenerate Kolmogorov equations in non-divergence form with rough-in-time coefficients. (English) Zbl 1528.35075

Summary: We consider a class of degenerate equations in non-divergence form satisfying a parabolic Hörmander condition, with coefficients that are measurable in time and Hölder continuous in the space variables. By utilizing a generalized notion of strong solution, we establish the existence of a fundamental solution and its optimal Hölder regularity, as well as Gaussian estimates. These results are key to study the backward Kolmogorov equations associated to a class of Langevin diffusions.

MSC:

35K65 Degenerate parabolic equations
35B65 Smoothness and regularity of solutions to PDEs
35A08 Fundamental solutions to PDEs

References:

[1] Anceschi, F.; Rebucci, A., On the fundamental solution for degenerate Kolmogorov equations with rough coefficients, Journal of Elliptic and Parabolic Equations (2022) · Zbl 1505.35061 · doi:10.1007/s41808-022-00191-8
[2] Barucci, E.; Polidoro, S.; Vespri, V., Some results on partial differential equations and Asian options, Math. Models Methods Appl. Sci., 11, 3, 475-497 (2001) · Zbl 1034.35166 · doi:10.1142/S0218202501000945
[3] Biagi, S., Bramanti, M.: Schauder estimates for Kolmogorov-Fokker-Planck operators with coefficients measurable in time and Hölder continuous in space. Preprint, arXiv:2205.10270 (2022)
[4] Bramanti, M.; Polidoro, S., Fundamental solutions for Kolmogorov-Fokker-Planck operators with time-depending measurable coefficients, Math. Eng., 2, 4, 734-771 (2020) · Zbl 1490.35495 · doi:10.3934/mine.2020035
[5] De Raynal, PC, Strong existence and uniqueness for degenerate sde with hölder drift, Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 53, 259-286 (2017) · Zbl 1434.60137
[6] Delarue, F.; Menozzi, S., Density estimates for a random noise propagating through a chain of differential equations, J. Funct. Anal., 259, 6, 1577-1630 (2010) · Zbl 1223.60037 · doi:10.1016/j.jfa.2010.05.002
[7] Di Francesco, M.; Pascucci, A., On a class of degenerate parabolic equations of Kolmogorov type, AMRX Appl. Math. Res. Express, 3, 77-116 (2005) · Zbl 1085.35086 · doi:10.1155/AMRX.2005.77
[8] Di Francesco, M.; Pascucci, A., A continuous dependence result for ultraparabolic equations in option pricing, J. Math. Anal. Appl., 336, 2, 1026-1041 (2007) · Zbl 1152.35063 · doi:10.1016/j.jmaa.2007.03.031
[9] Di Francesco, M.; Polidoro, S., Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form, Adv. Differential Equations, 11, 11, 1261-1320 (2006) · Zbl 1153.35312 · doi:10.57262/ade/1355867597
[10] Dong, H., Yastrzhembskiy, T.: Global Schauder estimates for kinetic Kolmogorov-Fokker-Planck equations. Preprint, arXiv:2209.00769 (2022) · Zbl 1493.35015
[11] Folland, G.B., Stein, E.M.: Hardy spaces on homogeneous groups, Mathematical Notes, vol. 28. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo (1982) · Zbl 0508.42025
[12] Friedman, A., Partial differential equations of parabolic type (1964), Englewood Cliffs, N.J.: Prentice-Hall Inc., Englewood Cliffs, N.J. · Zbl 0144.34903
[13] Henderson, C.; Snelson, S., \(C^\infty\) smoothing for weak solutions of the inhomogeneous Landau equation, Arch. Ration. Mech. Anal., 236, 1, 113-143 (2020) · Zbl 1435.35101 · doi:10.1007/s00205-019-01465-7
[14] Henderson, C., Wang, W.: Kinetic Schauder estimates with time-irregular coefficients and uniqueness for the Landau equation. Preprint, arXiv:2205.12930 (2022)
[15] Hörmander, L., Hypoelliptic second order differential equations, Acta Math., 119, 147-171 (1967) · Zbl 0156.10701 · doi:10.1007/BF02392081
[16] Il’in, AM, On a class of ultraparabolic equations, Dokl. Akad. Nauk SSSR, 159, 1214-1217 (1964) · Zbl 0173.37702
[17] Imbert, C.; Mouhot, C., The Schauder estimate in kinetic theory with application to a toy nonlinear model, Ann. H. Lebesgue, 4, 369-405 (2021) · Zbl 1484.35093 · doi:10.5802/ahl.75
[18] Imbert, C.; Silvestre, L., The Schauder estimate for kinetic integral equations, Anal. PDE, 14, 1, 171-204 (2021) · Zbl 1467.35069 · doi:10.2140/apde.2021.14.171
[19] Kolmogorov, A., Zufällige Bewegungen (zur Theorie der Brownschen Bewegung), Ann. of Math. (2), 35, 1, 116-117 (1934) · Zbl 0008.39906 · doi:10.2307/1968123
[20] Krylov, NV, Hörmander’s theorem for stochastic partial differential equations, Algebra i Analiz, 27, 3, 157-182 (2015) · Zbl 1439.60061 · doi:10.1090/spmj/1398
[21] Lanconelli, A.; Pagliarani, S.; Pascucci, A., Local densities for a class of degenerate diffusions, Ann. Inst. Henri Poincaré Probab. Stat., 56, 2, 1440-1464 (2020) · Zbl 1434.60214 · doi:10.1214/19-AIHP1009
[22] Lanconelli, E., Pascucci, A., Polidoro, S.: Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance. In: Nonlinear problems in mathematical physics and related topics, II, Int. Math. Ser. (N. Y.), vol. 2, pp. 243-265. Kluwer/Plenum, New York (2002). doi:10.1007/978-1-4615-0701-7_14. · Zbl 1032.35114
[23] Lanconelli, E., Polidoro, S.: On a class of hypoelliptic evolution operators. pp. 29-63 (1994). Partial differential equations, II (Turin, 1993) · Zbl 0811.35018
[24] Lorenzi, L., Schauder estimates for degenerate elliptic and parabolic problems with unbounded coefficients in \({\mathbb{R} }^N\), Differential Integral Equations, 18, 5, 531-566 (2005) · Zbl 1212.35255 · doi:10.57262/die/1356060184
[25] Lucertini, G., Pagliarani, S., Pascucci, A.: Optimal Schauder estimates for kinetic Kolmogorov equations with time measurable coefficients. Preprint, arXiv:2304.13392 (2023)
[26] Lunardi, A.: Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in \({\mathbb{R}}^n\). Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24(1), 133-164 (1997). http://www.numdam.org/item?id=ASNSP_1997_4_24_1_133_0 · Zbl 0887.35062
[27] Manfredini, M., The Dirichlet problem for a class of ultraparabolic equations, Adv. Differential Equations, 2, 5, 831-866 (1997) · Zbl 1023.35518 · doi:10.57262/ade/1366638967
[28] McKean Jr., H.P., Singer, I.M.: Curvature and the eigenvalues of the Laplacian. J. Differential Geometry 1(1), 43-69 (1967). http://projecteuclid.org/euclid.jdg/1214427880 · Zbl 0198.44301
[29] Menozzi, S., Parametrix techniques and martingale problems for some degenerate Kolmogorov equations, Electron. Commun. Probab., 16, 234-250 (2011) · Zbl 1225.60097 · doi:10.1214/ECP.v16-1619
[30] Pagliarani, S.; Pascucci, A.; Pignotti, M., Intrinsic Taylor formula for Kolmogorov-type homogeneous groups, J. Math. Anal. Appl., 435, 2, 1054-1087 (2016) · Zbl 1330.22017 · doi:10.1016/j.jmaa.2015.10.080
[31] Pagliarani, S.; Pascucci, A.; Pignotti, M., Intrinsic expansions for averaged diffusion processes, Stochastic Process. Appl., 127, 8, 2560-2585 (2017) · Zbl 1373.60137 · doi:10.1016/j.spa.2016.12.002
[32] Pagliarani, S., Polidoro, S.: A Yosida’s parametrix approach to Varadhan’s estimates for a degenerate diffusion under the weak Hörmander condition. J. Math. Anal. Appl. 517(1), Paper No. 126538, 42 (2023). doi:10.1016/j.jmaa.2022.126538. · Zbl 1498.91457
[33] Pascucci, A.: PDE and martingale methods in option pricing, Bocconi & Springer Series, vol. 2. Springer, Milan; Bocconi University Press, Milan (2011). doi:10.1007/978-88-470-1781-8. · Zbl 1214.91002
[34] Pascucci, A.; Pesce, A., The parametrix method for parabolic SPDEs, Stochastic Process. Appl., 130, 10, 6226-6245 (2020) · Zbl 1455.60085 · doi:10.1016/j.spa.2020.05.008
[35] Pascucci, A.; Pesce, A., On stochastic Langevin and Fokker-Planck equations: the two-dimensional case, J. Differential Equations, 310, 443-483 (2022) · Zbl 1480.35415 · doi:10.1016/j.jde.2021.11.004
[36] Polidoro, S.: On a class of ultraparabolic operators of Kolmogorov-Fokker-Planck type. Matematiche (Catania) 49(1), 53-105 (1995) (1994) · Zbl 0845.35059
[37] Priola, E., Global Schauder estimates for a class of degenerate Kolmogorov equations, Studia Math., 194, 2, 117-153 (2009) · Zbl 1178.35102 · doi:10.4064/sm194-2-2
[38] Sonin, IM, A class of degenerate diffusion processes, Teor. Verojatnost. i Primenen, 12, 540-547 (1967) · Zbl 0183.19901
[39] Weber, M., The fundamental solution of a degenerate partial differential equation of parabolic type, Trans. Amer. Math. Soc., 71, 24-37 (1951) · Zbl 0043.09901 · doi:10.2307/1990857
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.