×

On exponential splitting methods for semilinear abstract Cauchy problems. (English) Zbl 1520.47120

Summary: Due to the seminal works of M. Hochbruck and A. Ostermann [Appl. Numer. Math. 53, No. 2–4, 323–339 (2005; Zbl 1070.65099); Acta Numerica 19, 209–286 (2010; Zbl 1242.65109)], exponential splittings are well established numerical methods utilizing operator semigroup theory for the treatment of semilinear evolution equations whose principal linear part involves a sectorial operator with angle greater than \(\frac{\pi}{2}\) (meaning essentially the holomorphy of the underlying semigroup). The present paper contributes to this subject by relaxing the sectoriality condition, but in turn requiring that the semigroup operators act consistently on an interpolation couple (or on a scale of Banach spaces). Our conditions (on the semigroup and on the semilinearity) are inspired by the approach of T. Kato [Math. Z. 187, 471–480 (1984; Zbl 0545.35073)] to the local solvability of the Navier-Stokes equation, where the \(\mathrm{L}^p\)-\(\mathrm{L}^r\)-smoothing of the Stokes semigroup was fundamental. The present abstract operator theoretic result is applicable for this latter problem (as was already the result of Hochbruck and Ostermann), or more generally in the setting of Hochbruck and Ostermann [2005, loc.cit.], but also allows the consideration of examples, such as non-analytic Ornstein-Uhlenbeck semigroups or the Navier-Stokes flow around rotating bodies.

MSC:

47N40 Applications of operator theory in numerical analysis
47J35 Nonlinear evolution equations
65J08 Numerical solutions to abstract evolution equations
47D06 One-parameter semigroups and linear evolution equations
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

References:

[1] Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-valued Laplace transforms and Cauchy problems, volume 96 of Monographs in Mathematics. Birkhäuser/Springer Basel AG, Basel, second edition, (2011) · Zbl 1226.34002
[2] Bátkai, A.; Csomós, P.; Farkas, B., Operator splitting for dissipative delay equations, Semigroup Forum, 95, 2, 345-365 (2017) · Zbl 1516.47119 · doi:10.1007/s00233-016-9812-y
[3] Beckner, W., Inequalities in Fourier analysis, Ann. Math., 102, 1, 159-182 (1975) · Zbl 0338.42017 · doi:10.2307/1970980
[4] Buchholz, S.; Dörich, B.; Hochbruck, M., On averaged exponential integrators for semilinear wave equations with solutions of low-regularity, Partial Differ. Equ. Appl., 2, 2, 23 (2021) · Zbl 1460.65055 · doi:10.1007/s42985-020-00045-9
[5] Chill, R.; Fašangová, E.; Metafune, G.; Pallara, D., The sector of analyticity of the Ornstein-Uhlenbeck semigroup on \(L^p\) spaces with respect to invariant measure, J. London Math. Soc., 71, 3, 703-722 (2005) · Zbl 1123.35030 · doi:10.1112/S0024610705006344
[6] Clark, DS, A short proof of a discrete Gronwall, Discrete Appl. Math., 16, 279-281 (1987) · Zbl 0612.39004 · doi:10.1016/0166-218X(87)90064-3
[7] Csomós, P., Bátkai, A., Farkas, B., Ostermann, A.: Operator semigroups for numerical analysis. Lecture notes, TULKA Internetseminar, https://www.fan.uni-wuppertal.de/fileadmin/mathe/reine_mathematik/funktionalanalysis/farkas/15ISEM-NumerSgrp.pdf (2012)
[8] Davies, E.B.: Heat kernels and spectral theory. Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1990)
[9] Engel, K.-J., Nagel, R.: One-parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York (2000) · Zbl 0952.47036
[10] Farkas, B.; Lunardi, A., Maximal regularity for Kolmogorov operators in \(L^2\) spaces with respect to invariant measures, J. Math. Pures Appl., 86, 4, 310-321 (2006) · Zbl 1117.35018 · doi:10.1016/j.matpur.2006.06.002
[11] Fornaro, S., Metafune, G., Pallara, D., Schnaubelt, R.: \(L^p\)-spectrum of degenerate hypoelliptic Ornstein-Uhlenbeck operators. J. Funct. Anal. 280(2):Paper No. 108807, 22, (2021) · Zbl 1454.35239
[12] Geissert, M.; Heck, H.; Hieber, M., \(L^p\)-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle, J. Reine Angew. Math., 596, 45-62 (2006) · Zbl 1102.76015
[13] Geissert, M.; Heck, H.; Hieber, M.; Wood, I., The Ornstein-Uhlenbeck semigroup in exterior domains, Arch. Math. (Basel), 85, 6, 554-562 (2005) · Zbl 1114.47043 · doi:10.1007/s00013-005-1400-4
[14] Geissert, M.; Lunardi, A., Invariant measures and maximal \(L^2\) regularity for nonautonomous Ornstein-Uhlenbeck equations, J. Lond. Math. Soc., 77, 3, 719-740 (2008) · Zbl 1153.47030 · doi:10.1112/jlms/jdn009
[15] Giga, Y.; Sohr, H., Abstract \(L^p\) estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal., 102, 1, 72-94 (1991) · Zbl 0739.35067 · doi:10.1016/0022-1236(91)90136-S
[16] Haase, M.: The functional calculus for sectorial operators. Operator Theory: Advances and Applications, vol. 169. Birkhäuser Verlag, Basel (2006) · Zbl 1101.47010
[17] Hansel, T., On the Navier-Stokes equations with rotating effect and prescribed outflow velocity, J. Math. Fluid Mech., 13, 3, 405-419 (2011) · Zbl 1270.35345 · doi:10.1007/s00021-010-0026-x
[18] Hansen, E.; Ostermann, A., High order splitting methods for analytic semigroups exist, BIT, 49, 3, 527-542 (2009) · Zbl 1176.65066 · doi:10.1007/s10543-009-0236-x
[19] Hansen, E.; Ostermann, A., High-order splitting schemes for semilinear evolution equations, BIT, 56, 4, 1303-1316 (2016) · Zbl 1355.65071 · doi:10.1007/s10543-016-0604-2
[20] Hieber, M.; Sawada, O., The Navier-Stokes equations in \({\mathbb{R}}^n\) with linearly growing initial data, Arch. Ration. Mech. Anal., 175, 2, 269-285 (2005) · Zbl 1072.35144 · doi:10.1007/s00205-004-0347-0
[21] Hipp, D.; Hochbruck, M.; Ostermann, A., An exponential integrator for non-autonomous parabolic problems, Electron. Trans. Numer. Anal., 41, 497-511 (2014) · Zbl 1312.65210
[22] Hochbruck., M.: A short course on exponential integrators. In Matrix functions and matrix equations, volume 19 of Ser. Contemp. Appl. Math. CAM, pp. 28-49. Higher Ed. Press, Beijing (2015) · Zbl 1332.65101
[23] Hochbruck, M.; Ostermann, A., Exponential Runge-Kutta methods for parabolic problems, Appl. Numer. Math., 53, 2-4, 323-339 (2005) · Zbl 1070.65099 · doi:10.1016/j.apnum.2004.08.005
[24] Hochbruck, M.; Ostermann, A., Exponential integrators, Acta Numer, 19, 209-286 (2010) · Zbl 1242.65109 · doi:10.1017/S0962492910000048
[25] Hundertmark, D., Meyries, M., Machinek, L., Schnaubelt, R.: Operator semigroups and dispersive equations. Lecture notes, Internet Seminar. https://isem.math.kit.edu/images/b/b3/Isem16_final.pdf (2013)
[26] Hundsdorfer, W., Verwer, J.G.: A note on splitting errors for advection-reaction equations. Appl. Numer. Math., 18(1-3):191-199, 1995. In: Seventh Conference on the Numerical Treatment of Differential Equations (Halle, 1994) · Zbl 0833.65099
[27] Kato, T., Strong \(L^p\)-solutions of the Navier-Stokes equation in \({ R}^m\), with applications to weak solutions, Math. Z., 187, 4, 471-480 (1984) · Zbl 0545.35073 · doi:10.1007/BF01174182
[28] Komatsu, H., Fractional powers of operators, Pacific J. Math., 19, 285-346 (1966) · Zbl 0154.16104 · doi:10.2140/pjm.1966.19.285
[29] Lunardi, A.: Analytic semigroups and optimal regularity in parabolic problems. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 1995. (2013 reprint of the 1995 original) · Zbl 0816.35001
[30] Lunardi, A., On the Ornstein-Uhlenbeck operator in \(L^2\) spaces with respect to invariant measures, Trans. Amer. Math. Soc., 349, 1, 155-169 (1997) · Zbl 0890.35030 · doi:10.1090/S0002-9947-97-01802-3
[31] Lunardi, A.: Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in \({\bf R}^n\). Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24(1):133-164, 1997 · Zbl 0887.35062
[32] Lunardi, A.: Regularity for a class of sums of noncommuting operators. In Topics in nonlinear analysis, volume 35 of Progr. Nonlinear Differential Equations Appl. pp. 517-533. Birkhäuser, Basel (1999) · Zbl 0926.47025
[33] Lunardi, A., Metafune, G., Pallara, D.: The Ornstein-Uhlenbeck semigroup in finite dimension. Philos. Trans. Roy. Soc. A 378(2185):20200217, 15, 2020
[34] McLachlan, RI; Quispel, GRW, Splitting methods, Acta Numer, 11, 341-434 (2002) · Zbl 1105.65341 · doi:10.1017/S0962492902000053
[35] Metafune, G.: \(L^p\)-spectrum of Ornstein-Uhlenbeck operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 30(1):97-124, (2001) · Zbl 1065.35216
[36] Metafune, G.; Pallara, D.; Priola, E., Spectrum of Ornstein-Uhlenbeck operators in \(L^p\) spaces with respect to invariant measures, J. Funct. Anal., 196, 1, 40-60 (2002) · Zbl 1027.47036 · doi:10.1006/jfan.2002.3978
[37] G. Metafune, J. Prüss, A. Rhandi, and R. Schnaubelt. The domain of the Ornstein-Uhlenbeck operator on an \(L^p\)-space with invariant measure. Ann. Sc. Norm. Super. Pisa Cl. Sci. 1(2):471-485, 2002 · Zbl 1170.35375
[38] Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, vol. 44. Springer-Verlag, New York (1983) · Zbl 0516.47023
[39] Seidman, TI, How violent are fast controls?, Math. Control Signals Syst., 1, 1, 89-95 (1988) · Zbl 0663.49018 · doi:10.1007/BF02551238
[40] Travis, CC; Webb, GF, Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci. Hungar., 32, 1-2, 75-96 (1978) · Zbl 0388.34039 · doi:10.1007/BF01902205
[41] J. Zabczyk. Mathematical control theory—an introduction. Systems & Control: Foundations & Applications. Birkhäuser/Springer, Cham (2020) · Zbl 1437.93001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.