×

\(L^p\)-spectrum of degenerate hypoelliptic Ornstein-Uhlenbeck operators. (English) Zbl 1454.35239

Summary: We describe the spectrum of degenerate hypoelliptic Ornstein-Uhlenbeck operators \(\mathcal{A} = \sum\nolimits_{i, j = 1}^n q_{ij} D_{ij} + \sum_{i, j = 1}^n b_{ij} x_j D_i\) in \(L^p(\mathbb{R}^n), 1 \leq p < + \infty\), and in \(C_0 (\mathbb{R}^n)\). We show that the spectrum of \(\mathcal{A}\) is the sum of \((- \infty, 0]\) and the spectrum of the drift term. Our result gives a complete picture of the spectral properties of Ornstein-Uhlenbeck operators in \(L^p\) spaces.

MSC:

35P05 General topics in linear spectral theory for PDEs
35J70 Degenerate elliptic equations
35K65 Degenerate parabolic equations
47D06 One-parameter semigroups and linear evolution equations
Full Text: DOI

References:

[1] Bramanti, M.; Cupini, G.; Lanconelli, E.; Priola, E., Global \(L^p\) estimates for degenerate Ornstein-Uhlenbeck operators, Math. Z., 266, 789-816 (2010) · Zbl 1206.35051
[2] Chojnowska-Michalik, A.; Goldys, B., Generalized Ornstein-Uhlenbeck semigroups: Littlewood-Paley-Stein inequalities and the P.A. Meyer equivalence of norms, J. Funct. Anal., 182, 243-279 (2001) · Zbl 0997.47036
[3] Chojnowska-Michalik, A.; Goldys, B., Symmetric Ornstein-Uhlenbeck semigroups and their generators, Probab. Theory Relat. Fields, 124, 459-486 (2002) · Zbl 1028.60057
[4] Da Prato, G.; Lunardi, A., On the Ornstein-Uhlenbeck operator in spaces of continuous functions, J. Funct. Anal., 131, 94-114 (1995) · Zbl 0846.47004
[5] Da Prato, G.; Zabczyk, J., Ergodicity for Infinite Dimensional Systems (1996), Cambridge University Press · Zbl 0849.60052
[6] Donninger, R.; Schörkhuber, B., A spectral mapping theorem for perturbed Ornstein-Uhlenbeck operators on \(L^2( \mathbb{R}^d)\), J. Funct. Anal., 268, 247-2524 (2015) · Zbl 1321.47096
[7] Engel, K.; Nagel, R., One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol. 194 (2000), Springer · Zbl 0952.47036
[8] Farkas, B.; Lunardi, A., Maximal regularity for Kolmogorov operators in \(L^2\) spaces with respect to invariant measures, J. Math. Pures Appl., 86, 310-321 (2006) · Zbl 1117.35018
[9] Garofalo, N.; Tralli, G., Mehler met Ornstein and Uhlenbeck: the geometry of Carnot groups of step two and their heat kernels, preprint
[10] Garofalo, N.; Tralli, G., A class of nonlocal hypoelliptic operators and their extensions, Indiana Univ. Math. J. (2020), in press
[11] Garofalo, N.; Tralli, G., Hardy-Littlewood-Sobolev inequalities for a class of non-symmetric and non-doubling hypoelliptic semigroups, Math. Ann. (to appear) · Zbl 1496.35019
[12] Geissert, M.; Heck, H.; Hieber, M., \( L^p\)-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle, J. Reine Angew. Math., 596, 45-62 (2006) · Zbl 1102.76015
[13] Hörmander, L., Hypoelliptic second order differential equations, Acta Math., 119, 147-171 (1967) · Zbl 0156.10701
[14] Horn, R. A.; Johnson, C. R., Matrix Analysis (1985), Cambridge University Press · Zbl 0576.15001
[15] Kolmogorov, A., Zufällige Bewegungen (zur Theorie der Brownschen Bewegung), Ann. Math., 35, 1, 116-117 (1934) · Zbl 0008.39906
[16] Lanconelli, E.; Polidoro, S., On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Pol. Torino, 52, 29-63 (1994) · Zbl 0811.35018
[17] Lorenzi, L., Analytical Methods for Markov Semigroups (2017), Chapman & Hall/CRC
[18] Lunardi, A., Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in \(\mathbb{R}^n\), Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), 24, 133-164 (1997) · Zbl 0887.35062
[19] Lunardi, A., On the Ornstein-Uhlenbeck operator in \(L^2\) spaces with respect to invariant measures, Trans. Am. Math. Soc., 349, 155-169 (1997) · Zbl 0890.35030
[20] Metafune, G., \( L^p\)-spectrum of Ornstein-Uhlenbeck operators, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 30, 4, 97-124 (2001) · Zbl 1065.35216
[21] Metafune, G.; Pallara, D.; Priola, E., Spectrum of Ornstein-Uhlenbeck operators in \(L^p\) spaces with respect to invariant measures, J. Funct. Anal., 196, 40-60 (2002) · Zbl 1027.47036
[22] Metafune, G.; Pallara, D.; Vespri, V., \( L^p\)-estimates for a class of elliptic operators with unbounded coefficients \(\mathbb{R}^N\), Houst. J. Math., 31, 605-620 (2005) · Zbl 1129.35420
[23] Metafune, G.; Prüss, J.; Rhandi, A.; Schaubelt, R., The domain of the Ornstein-Uhlenbeck operator on an \(L^p\)-space with invariant measure, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 1, 5, 471-485 (2002) · Zbl 1170.35375
[24] Pascucci, A., Kolmogorov equations in physics and in finance, (Elliptic and Parabolic Problems. Elliptic and Parabolic Problems, Progr. Nonlinear Differential Equations Appl., vol. 63 (2005), Birkhäuser), 353-364 · Zbl 1085.35089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.