×

Eigenvalues of \(K\)-invariant Toeplitz operators on bounded symmetric domains. (English) Zbl 1487.47051

From the Introduction: “The well-known Toeplitz-Berezin calculus, acting on the Bergman space \(H^2 (D)\) of a bounded domain \(D\subset \mathbb C^d,\) is covariant under the biholomorphic group \(G\) of \(D.\) Actually, F. A. Berezin [Izv. Akad. Nauk SSSR, Ser. Mat. 39, 363–402 (1975; Zbl 0312.53050)] considered two kinds of symbolic calculus (contravariant and covariant symbols) which are related by the Berezin transform. For a bounded symmetric domain \(D=G/K\) of rank \(r,\) where \(G\) acts transitively on \(D\) and \(K\) is a maximal compact subgroup of \(G,\) one has a more general covariant Toeplitz-Berezin calculus acting on the weighted Bergman spaces \(H_\nu^2 (D)\) over \(D.\) Here \(\nu\) is a scalar parameter for the (scalar) holomorphic discrete series of \(G\) and its analytic continuation. Since \(G\) acts irreducibly on \(H_\nu^2 (D),\) there are no non-trivial \(G\)-invariant operators on the \(C^*\)-algebra generated by Toeplitz operators. On the other hand, there exist interesting \(K\)-invariant Toeplitz-type operators, which have been studied in relation to complex and harmonic analysis by J. Arazy and G. Zhang [J. Funct. Anal. 202, No. 1, 44–66 (2003; Zbl 1039.47020)] and S. Ghara et al. [Isr. J. Math. 247, No. 1, 331–360 (2022; Zbl 1506.47039)]. These operators are uniquely determined by a sequence of eigenvalues indexed over all partitions of length \(r\).”
In the paper under review, the author determines the eigenvalues of certain “fundamental” \(K\)-invariant Toeplitz-type operators, both for the covariant and contravariant symbol. The covariant symbol is treated as a direct generalization of the work of Arazy and Zhang [loc.cit.]. The contravariant symbol eigenvalue formula requires more effort; a crucial ingredient there is the dimension formula for the irreducible \(K\)-types.

MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
32M15 Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (complex-analytic aspects)
32A36 Bergman spaces of functions in several complex variables
53C35 Differential geometry of symmetric spaces

References:

[1] Arazy, J., A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains, Contemp. Math., 185, 7-65 (1995) · Zbl 0831.46014 · doi:10.1090/conm/185/02147
[2] Arazy, J.; Zhang, G., Homogeneous multiplication operators on bounded symmetric domains, J. Funct. Anal., 202, 44-66 (2003) · Zbl 1039.47020 · doi:10.1016/S0022-1236(02)00072-1
[3] Berezin, F., Quantization in complex symmetric spaces, Math. USSR-Izv., 9, 341-379 (1975) · Zbl 0312.53050 · doi:10.1070/IM1975v009n02ABEH001480
[4] Faraut, J.; Korányi, A., Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal., 88, 64-89 (1990) · Zbl 0718.32026 · doi:10.1016/0022-1236(90)90119-6
[5] Faraut, J.; Korányi, A., Analysis on Symmetric Cones (1994), Oxford: Clarendon Press, Oxford · Zbl 0841.43002
[6] Ghara, S., Kumar, S., Pramanick, P.: \(K\)-homogeneous tuple of operators on bounded symmetric domains. Israel J. Math. (to appear)
[7] Kadell, K., The Selberg-Jack symmetric functions, Adv. Math., 130, 33-102 (1997) · Zbl 0885.33009 · doi:10.1006/aima.1997.1642
[8] Lassalle, M., Noyau de Szegö, \(K\)-types et algèbres de Jordan, C.R. Acad. Sci. Paris, 303, 1-4 (1986) · Zbl 0592.32024
[9] Lassalle, M., Algèbres de Jordan et ensemble de Wallach, Invent. Math., 89, 375-393 (1987) · Zbl 0622.22008 · doi:10.1007/BF01389085
[10] Loos, O.: Jordan Pairs. Springer Lect. Notes in Math. 460 (1975) · Zbl 0301.17003
[11] Loos, O., Bounded Symmetric Domains and Jordan Pairs (1977), Irvine: Univ. of California, Irvine
[12] Schmid, W., Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math., 8, 61-80 (1969) · Zbl 0219.32013 · doi:10.1007/BF01389889
[13] Stanley, RP, Some combinatorial properties of the Jack symmetric functions, Adv. Math., 77, 76-115 (1989) · Zbl 0743.05072 · doi:10.1016/0001-8708(89)90015-7
[14] Upmeier, H., Jordan algebras and harmonic analysis on symmetric spaces, Am. J. Math., 108, 1-25 (1986) · Zbl 0603.46055 · doi:10.2307/2374466
[15] Upmeier, H., Toeplitz operators on bounded symmetric domains, Trans. Am. Math. Soc., 280, 221-237 (1983) · Zbl 0527.47019 · doi:10.1090/S0002-9947-1983-0712257-2
[16] Upmeier, H.: Jordan Algebras in Analysis, Operator Theory, and Quantum Mechanics, CBMS Series in Math. 67, Am. Math. Soc. (1987) · Zbl 0608.17013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.