×

A semi-Lagrangian approach for numerical simulation of coupled Burgers’ equations. (English) Zbl 1524.35327

Summary: In this study, we develop a numerical method for solving the coupled viscous Burgers’ equations based on a backward semi-Lagrangian method. The main difficulty associated with the backward semi-Lagrangian method for this problem is treating the nonlinearity in the diffusion-reaction equation, whose reaction coefficients are given in terms of coupled partial derivatives. To handle this difficulty, we use an extrapolation technique which splits the nonlinearity into two linear diffusion-reaction boundary value problems. In the proposed backward semi-Lagrangian method, we use fourth-order finite differences to discretize the diffusion-reaction boundary value problems and employ the so-called error correction method to solve the highly nonlinear initial value problems. Our overall algorithm is completely iteration-free and computationally efficient. We demonstrate the numerical accuracy and efficiency of the present method by comparing our numerical results with analytical solutions and other numerical solutions based on alternative existing methods.

MSC:

35K61 Nonlinear initial, boundary and initial-boundary value problems for nonlinear parabolic equations
65M25 Numerical aspects of the method of characteristics for initial value and initial-boundary value problems involving PDEs
65K05 Numerical mathematical programming methods
Full Text: DOI

References:

[1] Abazari, R.; Borhanifar, A., Numerical study of the solution of the Burgers and coupled Burgers equations by a differential transformation method, Comput Math Appl, 59, 2711-2722 (2010) · Zbl 1193.65178
[2] Abdoua, M. A.; Soliman, A. A., Variational iteration method for solving Burger’s and coupled Burger’s equations, J Comput Appl Math, 181, 245-251 (2005) · Zbl 1072.65127
[3] Anguelov, R.; Djoko, J. K.; Lubuma, J. M.S., Energy properties preserving schemes for Burgers’ equation, Numer Methods Partial Differ Equ, 24, 41-59 (2008) · Zbl 1144.65056
[4] Anker, D.; Freeman, N. C., On the soliton solutions of the Davey-Stewartson equation for long waves, Proc R Soc A, 360, 529-540 (1978) · Zbl 0384.76016
[5] Bargteil, A. W.; Goktekin, T. G.; Óbrien, J. F.; Strain, J. A., A semi-Lagrangian contouring method for fluid simulation, ACM Trans Graph, 25, 1, 19-38 (2006)
[6] Batchelor, G. K., Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory, J Fluid Mech, 119, 379-408 (1982) · Zbl 0498.76088
[7] Batchelor, G. K.; Wen, C. S., Sedimentation in a dilute polydisperse system of interacting spheres. Part 2. Numerical results, J Fluid Mech, 124, 495-528 (1982) · Zbl 0507.76101
[8] Bhatt, H. P.; Khaliq, A. Q.M., Fourth-order compact schemes for the numerical simulation of coupled Burgers’ equation, Comput Phys Commun, 200, 117-138 (2016) · Zbl 1351.35167
[9] Dehghan, M.; Hamidi, A.; Shakourifar, M., The solution of coupled burgers’ equations using Adomian-pade technique, Appl Math Comput, 189, 1034-1047 (2007) · Zbl 1122.65388
[10] Dehghan, M.; Abbaszadeh, M., Variational multiscale element-free Galerkin method combined with the moving kriging interpolation for solving some partial differential equations with discontinuous solutions, Comput Appl Math, 36, 1-37 (2017)
[11] Einkemmer, L.; Ostermann, A., A splitting approach for the Kadomtsev-Petviashvili equation, J Comput Phys, 299, 716-730 (2015) · Zbl 1354.65102
[12] Esipov, S. E., Coupled burgers equations: a model of polydispersive sedimentation, Physica Rev E, 52, 3711-3718 (1995)
[13] Ewing, R. E.; Wang, H., A summary of numerical methods for time-dependent advection-dominated partial differential equations, J Comput Appl Math, 128, 423-445 (2001) · Zbl 0983.65098
[14] Filbet, F.; Prouveur, C., High order time discretization for backward semi-lagrangian methods, J Comput Appl Math, 303, 171-188 (2016) · Zbl 1334.65149
[15] Fornberg, B., Calculation of weights in finite difference formulas, SIAM Rev, 40, 3, 685-691 (1998) · Zbl 0914.65010
[16] Ghidaglia, J. M.; Saut, J. C., On the initial value problem for the Davey-Stewartson systems, Nonlinearity, 3, 2, 475-506 (1990) · Zbl 0727.35111
[17] Giraldo, F. X.; Perot, J. B.; Fischer, P. F., A spectral element semi-lagrangian (SESL) method for the spherical shallow water equations, J Comput Phys, 190, 623-650 (2003) · Zbl 1076.76058
[18] Grandgirard, V., Global full-f gyrokinetic simulations of plasma turbulence, Plasma Phys Controll. F, 49, B173-B182 (2007)
[19] Islam, S. U.; Haq, S.; Uddin, M., A meshfree interpolation method for the numerical solution of the coupled nonlinear partial differential equations, Eng Anal Bound Elem, 33, 3, 399-409 (2009) · Zbl 1244.65193
[20] Kaya, D., An explicit solution of coupled viscous Burgers’ equation by the decomposition method, Intern J Math Math Sci, 27, 675-680 (2001) · Zbl 0997.35077
[21] Khater, A. H.; Temash, R. S.; Hassan, M. M., A Chebyshev spectral collocation method for solving burgers’-type equations, J Comput Appl Math, 222, 2, 333-350 (2008) · Zbl 1153.65102
[22] Kim, D.; Song, O.; Ko, H., A semi-lagrangian CIP fluid solver without dimensional splitting, Comput Graph Forum, 27, 467-475 (2008)
[23] Kim, P.; Piao, X.; Kim, S. D., An error corrected euler method for solving stiff problems based on Chebyshev collocation, SIAM J Numer Anal, 49, 2211-2230 (2011) · Zbl 1273.65095
[24] Kim, P.; Bu, S., Error control strategy in error correction methods, Kyungpook Math J, 55, 301-311 (2015) · Zbl 1332.65121
[25] Kim, S. D.; Piao, X.; Kim, D. H.; Kim, P., Convergence on error correction methods for solving initial value problems, J Comput Appl Math, 236, 17, 4448-4461 (2012) · Zbl 1248.65073
[26] Kumar, M.; Pandit, S., A composite numerical scheme for the numerical simulation of coupled Burgers’ equation, Comput Phys Commun, 185, 809-817 (2014) · Zbl 1360.35117
[27] Kuo, H. C.; Williams, R. T., Semi-Lagrangian solutions to the inviscid Burgers’ equation, Mon. Weather Rev., 118, 1278-1288 (1989)
[28] Kwon, J.-M.; Yi, D.; Piao, X.; Kim, P., Development of semi-Lagrangian gyrokinetic code for full-f turbulence simulation in general Tokamak geometry, J Comput Phys, 283, 518-540 (2015) · Zbl 1351.82004
[29] Lai, H.; Ma, C., A new lattice Boltzmann model for solving the coupled viscous burgers’ equation, Physica A, 395, 445-457 (2014) · Zbl 1395.76070
[30] Lu, C.; Fu, C.; Yang, H., Time-fractional generalized Boussinesq equation for Rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions, Appl Math Comput, 327, 104-116 (2018) · Zbl 1426.76721
[31] Mittal, R. C.; Arora, G., Numerical solution of the coupled viscous Burgers’ equation, Commun Nonlinear Sci Numer Simul, 16, 1304-1313 (2011) · Zbl 1221.65264
[32] Mokhtari, R.; Toodar, A. S.; Chegini, N. G., Application of the generalized differential quadrature method in solving Burgers’ equations, Commun Theor Phys, 56, 6, 1009-1015 (2011) · Zbl 1247.35108
[33] Ma, W. X.; Zhou, Y.; Equations, J. D., Lump solutions to nonlinear partial differential equations via Hirota bilinear forms, J Differ. Equ., 264, 2633-2659 (2018) · Zbl 1387.35532
[34] Ma, W. X.; Yong, X. L.; Zhang, H. Q., Diversity of interaction solutions to the \((2 + 1)\)-dimensional ito equation, Comput Math Appl, 75, 289-295 (2018) · Zbl 1416.35232
[35] Piao, X.; Kim, S.; Kim, P.; Kwon, J. M.; I., D. Y., An iteration free backward semi-Lagrangian scheme for guiding center problems, SIAM J Numer Anal, 53, 1, 619-643 (2015) · Zbl 1318.65054
[36] Piao, X.; Bu, S.; Bak, S.; Kim, P., An iteration free backward semi-Lagrangian scheme for solving incompressible navier-stokes equations, J Comput Phys, 283, 189-204 (2015) · Zbl 1351.76179
[37] Qiu, J. M.; Shu, C. W., Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov-Poisson system, J Comput Phys, 230, 23, 8386-8409 (2011) · Zbl 1273.65147
[38] Rashid, A.; Ismail, A. I.B., A fourier pseudospectral method for solving coupled viscous Burgers’ equations, Comput Methods Appl Math, 9, 4, 412-420 (2009) · Zbl 1183.35245
[39] Robert, A., A stable numerical integration scheme for the primitive meteorological equations, Atmos Ocean, 19, 35-46 (1981)
[40] Rossmanith, J. A.; Seal, D. C., A positivity-preserving high-order semi-lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations, J Comput Phys, 230, 16, 6203-6232 (2011) · Zbl 1419.76506
[41] Schonberk, M. E., Boundary value problems for the Fitzhugh-Nagumo equations, J Differ Equ, 30, 119-147 (1978) · Zbl 0407.35024
[42] Soliman, A. A., The modified extended tanh-function method for solving Burgers-type equations, Physica A, 361, 2, 394-404 (2006)
[43] Srivastava, V.; Tamsir, M.; Awasthi, M. K.; Singh, S., One-dimensional coupled Burgers’ equation and its numerical solution by an implicit logarithmic finite-difference method, AIP Adv, 4, Article 037119-1-037119-10 (2014)
[44] Staniforth, A.; Côté, J., Semi-Lagrangian integration schemes for atmospheric models, Mon Weather Rev, 119, 2206-2223 (1991)
[45] Tolstykh, M.; Shashkin, V. V., Vorticity-divergence mass-conserving semi-lagrangian shallow-water model using the reduced grid on the sphere, J Comput Phys, 231, 11, 4205-4233 (2012) · Zbl 1425.76167
[46] Wang, J.; Layton, A., New numerical methods for Burgers’ equation based on semi-Lagrangian and modified equation approaches, Appl Math Comput, 60, 6, 645-657 (2010) · Zbl 1191.65115
[47] Xiu, D.; Karniadakis, G. E., A semi-Lagrangian high-order method for Navier-Stokes equations, J Comput Phys, 172, 658-684 (2001) · Zbl 1028.76026
[48] Xiu, D.; Sherwin, S. J.; Dong, S.; Karniadakis, G. E., Strong and auxiliary forms of the semi-Lagrangian method for incompressible flows, J Sci Comput, 25, 1, 323-346 (2005) · Zbl 1203.76122
[49] Yang, H. W.; Chen, X.; Guo, M.; Chen, Y. D., A new ZK-BO equation for three-dimensional algebraic Rossby solitary waves and its solution as well as fission property authors, Nonlinear Dyn, 91, 3, 2019-2032 (2018) · Zbl 1390.76044
[50] Yabe, T.; Aoki, T., A universal solver for hyperbolic equations by cubic-polynomial interpolation I. One-dimensional solvers, Comput Phys Commun, 66, 2-3, 219-232 (1991) · Zbl 0991.65521
[51] Zhang, J. B.; Ma, W. X., Mixed lump-kink solutions to the BKP equation, Comput Math Appl, 74, 3, 591-596 (2017) · Zbl 1387.35540
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.